

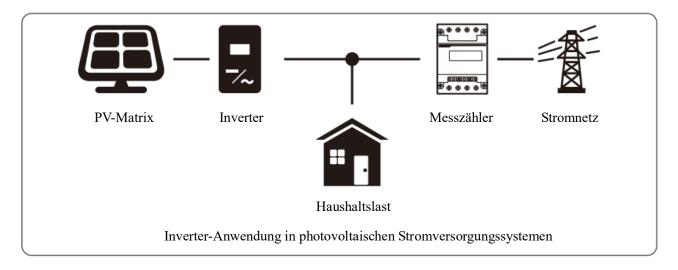
Netzgekoppelter PV-Inverter

SUN-15K-G05

Benutzerhandbuch

Inhalt

1. Einführung	2 -
1.1 Außenansicht des Geräts	2 -
1.2 Teileliste	3 -
2. Sicherheitswarnungen und -anweisungen	4 -
2.1 Sicherheitssymbole	4 -
2.2 Sicherheitsanweisungen	4 -
2.3 Hinweise zur Verwendung	5 -
3. Bedienungsschnittstelle	6 -
3.1 Ansicht der Schnittstelle	6 -
3.2 Status-Anzeige	6 -
3.3 Schalttasten	7 -
3.4 LCD-Anzeige	7 -
4. Produkt-Installation	8 -
4.1 Wahl des Installationsorts	8 -
4.2 Installation des Inverters	- 10 -
5 Elektrischer Anschluss	- 12 -
5.1 Anschluss der DC-Eingangsklemmen	- 12 -
5.2 Anschluss der AC-Eingangsklemmen	- 14 -
5.3 Anschluss der Erdungsleitung	- 17 -
5.4 Schutzeinrichtung für maximalen Überstrom	- 18 -
5.5 Anschluss der Inverterüberwachung	- 18 -
5.6 Installation des Datenloggers	- 19 -
5.7 Konfiguration des Datenloggers	· 19 -
6. Starten und Abschaltung	· 19 -
6.1 Starten des Inverters	- 20 -
6.2 Abschaltung des Inverters	- 20 -
6.3 Anti-PID-Funktion (Optional)	- 20 -
7. Null-Export-Funktion (Nulleinspeisung) über Energiezähler	- 21 -
7.1 Messzähler für Mehrstränge- und Parallelbetrieb	- 25 -
7.2 Verwendung der Null-Export-Funktion	- 30 -
7.3 Hinweise zur Verwendung der Null-Export-Funktion	- 31 -
7.4 Wie können Sie die Lastleistung Ihrer PV-Netzkopplungsanlage auf der Monitoring-Plattform abfragen?-	- 31 -
8. Allgemeine Bedienung	- 33 -
8.1 Die Start-Oberfläche	- 36 -
8.2 Untermenüs im Hauptmenü	- 37 -
8.3 Einstellung der Systemparameter	- 39 -
8.4 Einstellung der Laufparameter	- 40 -
8.5 Einstellung der Schutzparameter	- 55 -
9. Reparatur und Wartung	- 58 -
10. Fehlerinformation und -verarbeitung.	- 58 -
10.1 Fehlercode	- 59 -
11.Spezifikation	- 63 -

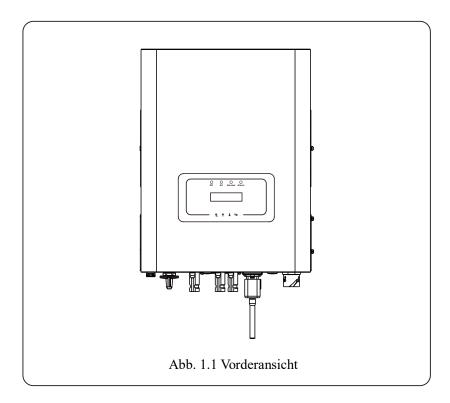

Über dieses Handbuch

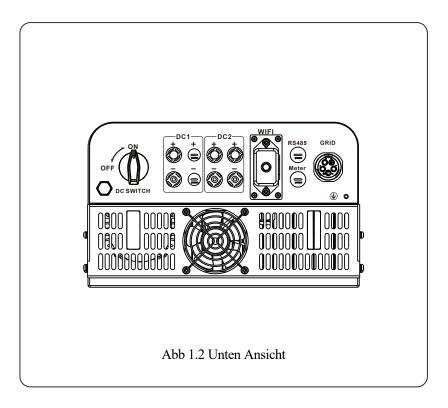
Das Handbuch beinhaltet hauptsächlich die Produktinformationen, Richtlinien für die Installation, den Betrieb und die Wartung. Das Handbuch kann keine vollständigen Informationen über die Photovoltaik (PV)-Anlage enthalten.

Wie Sie dieses Handbuch verwenden

Lesen Sie das Handbuch und andere zugehörige Dokumente, bevor Sie mit dem Inverter arbeiten. Die Dokumente müssen sorgfältig aufbewahrt werden und jederzeit verfügbar sein. Der Inhalt kann aufgrund von Produktentwicklungen regelmäßig aktualisiert oder überarbeitet werden. Die Informationen in diesem Handbuch können ohne vorherige Ankündigung geändert werden. Das neueste Handbuch kann über service@deye.com.cn bezogen werden.

Netzgekoppelte Photovoltaik-Anlage (PV-Netzanlage)

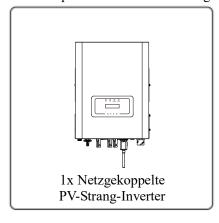


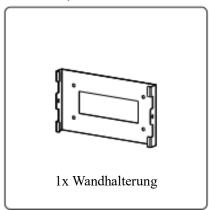

1. Einführung

1.1 Außenansicht des Geräts

Der netzgekoppelte Inverter kann den Gleichstrom des Solarpanels in Wechselstrom umwandeln, der direkt in das Stromnetz eingespeist werden kann. Seine Außenansicht ist unten dargestellt. Diese Modelle umfassen SUN-15K-G05.

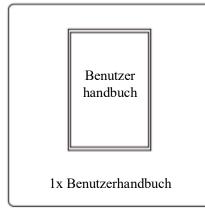
Im Folgenden wird zusammenfassend der Begriff "Inverter" verwendet.

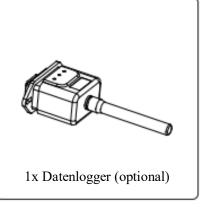


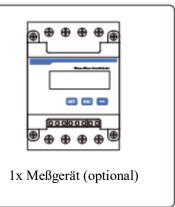


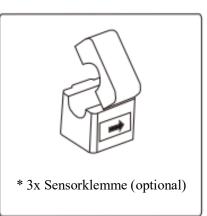
1.2 Teileliste

Bitte überprüfen Sie anhand der folgenden Tabelle, ob alle Teile im Paket enthalten sind:









2. Sicherheitswarnungen und Anweisungen

Bei unsachgemäßer Verwendung besteht die Gefahr eines Stromschlags oder von Verbrennungen. Dieses Handbuch enthält wichtige Anweisungen, die bei der Installation und Wartung befolgt werden sollten. Bitte lesen Sie diese Anweisungen vor der Anwendung sorgfältig durch und bewahren Sie sie zum späteren Nachschlagen auf.

2.1 Sicherheitssymbole

Die in diesem Handbuch verwendeten Sicherheitssymbole, die auf potenzielle Sicherheitsrisiken und wichtige Sicherheitsinformationen hinweisen, sind unten aufgeführt:

Warnung

Das Warnsymbol weist auf wichtige Sicherheitsanweisungen hin, deren Nichtbeachtung zu schweren Verletzungen oder zum Tod führen kann.

Schock-Gefahr

Das Symbol "Vorsicht, Stromschlag Gefahr" weist auf wichtige Sicherheitsanweisungen hin, deren Nichtbeachtung zu einem Stromschlag führen kann.

Sicherheitstipp

Das Symbol "Tipp" kennzeichnet wichtige Sicherheitsanweisungen, deren Nichtbeachtung zu einer Beschädigung oder Zerstörung des Inverters führen kann.

Gefahr durch hohe Temperaturen

Das Symbol "Vorsicht, heiße Oberfläche" weist auf Sicherheitsanweisungen hin, deren Nichtbeachtung zu Verbrennungen führen kann.

2.2 Sicherheitsanweisungen

Warnino

Die elektrische Installation des Inverters muss den Sicherheitsvorschriften des Landes bzw. der Region entsprechen.

Warnung

Der Inverter verwendet eine nicht isolierte Topologie, daher muss vor dem Betrieb des Inverters sichergestellt werden, dass der DC-Eingang und der AC-Ausgang elektrisch isoliert sind.

Schockgefahr

Das Gehäuse des Inverters darf nicht demontiert werden, da die Gefahr eines Stromschlags besteht, der zu schweren Verletzungen oder zum Tod führen kann. Lassen Sie die Reparatur von einer qualifizierten Person durchführen.

Schockgefahr

Wenn das PV-Modul dem Sonnenlicht ausgesetzt ist, wird am Ausgang eine Gleichspannung erzeugt. Vermeiden Sie Berührungen, um einen Stromschlag zu vermeiden.

Schockgefahr

Wenn Sie den Ein- und Ausgang des Inverters zu Wartungszwecken abtrennen, warten Sie bitte mindestens 5 Minuten, bis der Inverter die restliche Elektrizität entladen hat.

Gefahr durch hohe Temperaturen

Die lokale Temperatur des Inverters kann während des Betriebs 80°C überschreiten. Bitte berühren Sie das Gehäuse des Inverters nicht.

2.3 Hinweise zur Verwendung

Der dreiphasige Strang-Inverter wurde gemäß den einschlägigen Sicherheitsvorschriften entwickelt und getestet. Er kann die persönliche Sicherheit des Benutzers gewährleisten. Da es sich jedoch um ein elektrisches Gerät handelt, kann es bei unsachgemäßer Bedienung zu Stromschlägen oder Verletzungen kommen. Bitte betreiben Sie das Gerät unter den unten aufgeführten Bedingungen:

- 1. Der Inverter sollte von einer qualifizierten Person gemäß den örtlichen Vorschriften installiert und gewartet werden.
- 2. Trennen Sie bei der Installation und Wartung zuerst die AC-Seite und dann die DC-Seite. Warten Sie danach bitte mindestens 5 Minuten, um einen Stromschlag zu vermeiden.
- 3. Die lokale Temperatur des Inverters kann während des Betriebs 80 °C überschreiten. Berühren Sie ihn nicht, um Verletzungen zu vermeiden.
- 4. Die gesamte Elektroinstallation muss den örtlichen elektrischen Normen entsprechen, und nach Einholung der Genehmigung von der zuständigen Behörde können die Fachleute den Inverter an das Stromnetz anschließen.
- 5. Bitte ergreifen Sie geeignete antistatische Maßnahmen.
- 6. Bitte installieren Sie den Inverter so, dass Kinder ihn nicht erreichen können.
- 7. Schritte zum Starten des Inverters: 1) Schalten Sie den AC-seitigen Leistungsschalter ein. 2) Schalten Sie den DC-seitigen Leistungsschalter des PV-Panels ein. 3) Schalten Sie den DC-Schalter des Inverters ein.
 - Schritte zur Abschaltung des Inverters: 1) Schalten Sie den AC-seitigen Leistungsschalter aus. 2) Schalten Sie den DC-seitigen Leistungsschalter des PV-Panels aus. 3) Schalten Sie den DC-Schalter des Inverters aus.
- 8. Stecken Sie die AC- und DC-Klemmen nicht ein oder entfernen Sie sie nicht, wenn sich der Inverter im Normalbetrieb befindet.
- 9. Die DC-Eingangsspannung des Inverters darf den Maximalwert des jeweiligen Modells nicht überschreiten.

3. Bedienungsschnittstelle

3.1 Ansicht der Schnittstelle

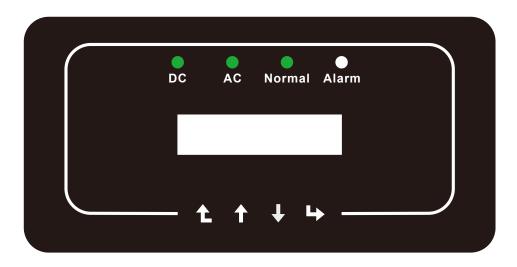


Abb. 3.1 Anzeige auf der Vorderseite

3.2 Status-Anzeige

Auf der Frontplatte des Inverters befinden sich 4 LED-Statusanzeigen. Weitere Details dazu finden Sie in der Tabelle 3.1.

Indicator	Status	Erläuterung
● DC	Ein	Inverter erkennt DC-Eingang
• DC	Aus	Niedrige DC-Eingangsspannung
• • • •	Ein	Netzanbindung
• AC	Aus	Netz nicht verfügbar
NODMAI	Ein	Normal-Betrieb
NORMAL	Aus	Betrieb-Stopp
• ALARM	Ein	Störungen erkannt bzw. Störungsmeldungen
	Aus	Bei Normal-Betrieb

Tabelle 3.1 Leuchten der Statusanzeige

3.3 Schalttasten

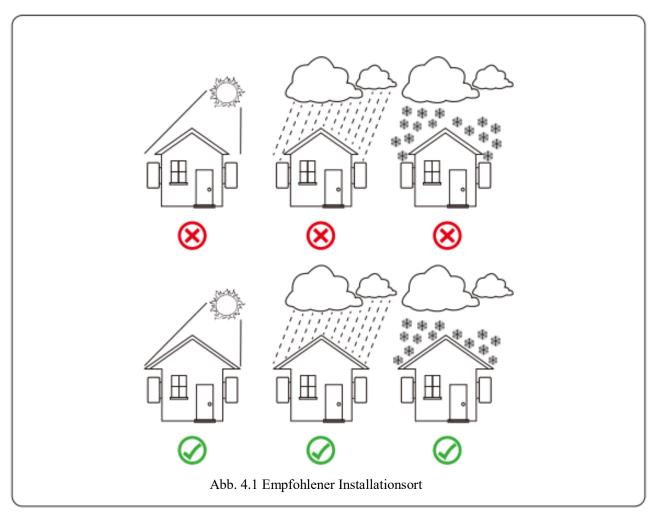
An der Vorderseite des Inverters befinden sich 4 Tasten (von links nach rechts): Esc, Auf, Ab und Eingabe. Das Tastenfeld wird verwendet für:

- Blättern durch die angezeigten Optionen (Auf und Ab-Taste);
- Ändern der einstellbaren Einstellungen (Esc und Eingabe-Taste).

3.4 LCD-Anzeige

Die zweizeilige LCD-Anzeige befindet sich auf der Vorderseite des Inverters und zeigt die folgenden Informationen an:

- Betriebsstatus und Daten des Inverters;
- Servicemeldungen für den Bediener;
- Alarm- und Fehlermeldungen.

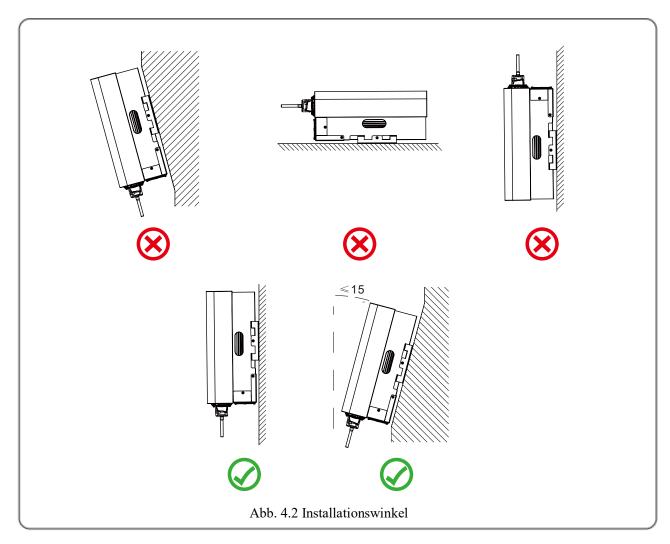

4. Produkt-Installation

4.1 Wahl des Installationsorts

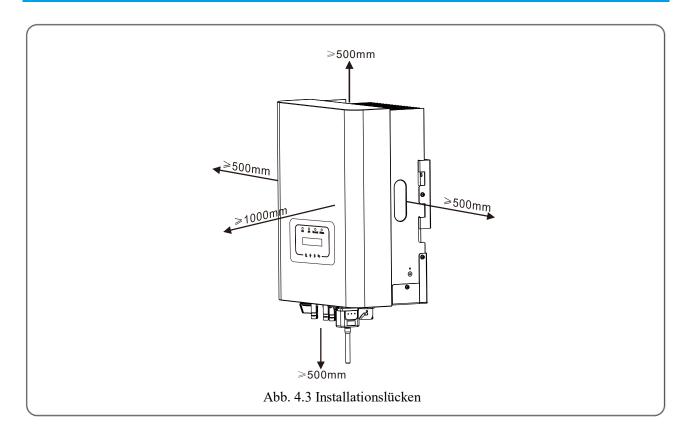
Bei der Wahl des Standorts für den Inverter sollten folgende Kriterien berücksichtigt werden:

WARNUNG: Brandgefahr

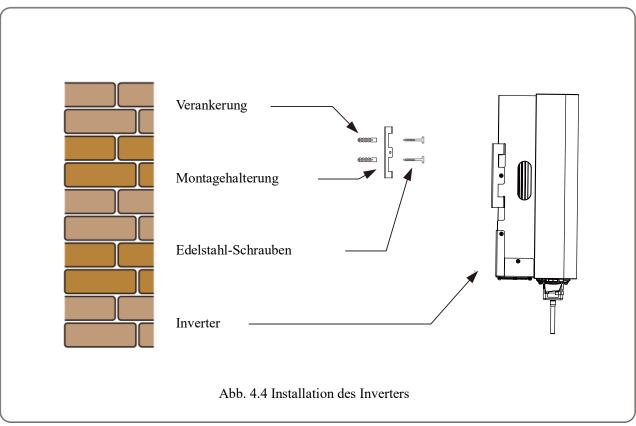
- Installieren Sie den Inverter nicht in Bereichen, in denen sich leicht entflammbare Materialien oder Gase befinden.
- Installieren Sie den Inverter nicht in explosionsgefährdeten Umgebungen.
- Installieren Sie den Inverter nicht in kleinen geschlossenen Räumen, in denen die Luft nicht frei zirkulieren kann. Um eine Überhitzung zu vermeiden, stellen Sie sicher, dass die Luftzirkulation um den Inverter nicht behindert wird.
- Direkte Sonneneinstrahlung erhöht die Betriebstemperatur des Inverters und kann zu einer Begrenzung der Ausgangsleistung führen. Es wird empfohlen, den Inverter so zu installieren, dass direkte Sonneneinstrahlung oder Regen vermieden wird.
- Um eine Überhitzung zu vermeiden, muss die Umgebungstemperatur bei der Wahl des Installationsortes des Inverters berücksichtigt werden. Es wird empfohlen, eine Sonnenblende zu verwenden, um die direkte Sonneneinstrahlung zu minimieren, wenn die Umgebungstemperatur um das Gerät herum 100°F/40°C überschreitet.



- Installieren Sie den Inverter an einer Wand oder einer stabilen Struktur, die das Gewicht tragen kann.
- Installieren Sie den Inverter vertikal mit einer maximalen Neigung von +/-15°. Wenn der Neigungswinkel größer als der angegebene Maximalwert ist, kann die Wärmeabgabe behindert werden, was zu einer geringeren als der erwarteten Ausgangsleistung führen kann.
- Wenn Sie mehr als einen Inverter installieren, müssen Sie zwischen den einzelnen Invertern mindestens 500 mm Abstand halten. Und jeder Inverter muss mindestens 500mm oben und unten frei sein. Der Inverter muss an einem Ort installiert werden, den Kinder nicht erreichen können. Siehe Abb. 4.3.
- Überlegen Sie, ob die Installationsumgebung geeignet ist, um die LCD-Anzeige und Status-Anzeige des Inverters deutlich zu erkennen.
- Wenn der Inverter in einem luftdichten Haus installiert ist, muss die Umgebung belüftet sein.

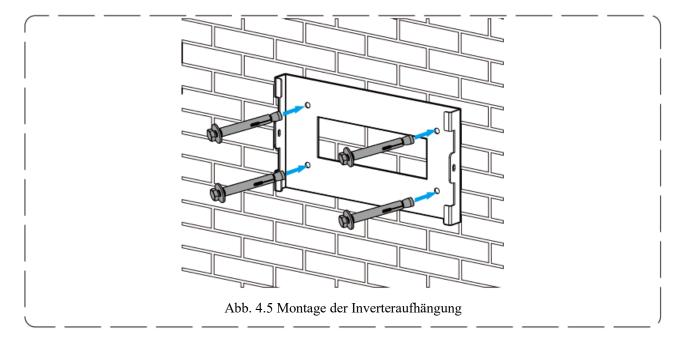

Sicherheitstipp

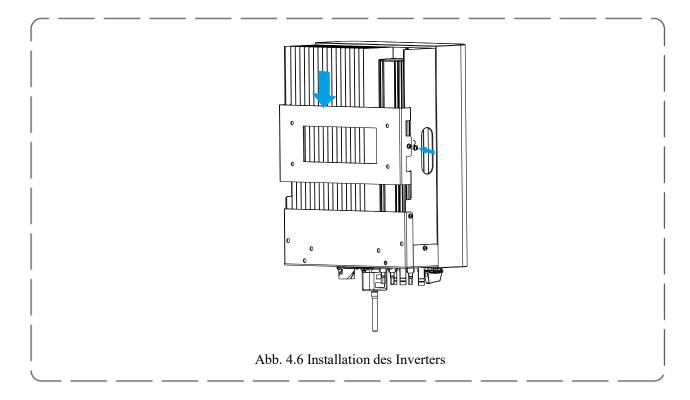
Stellen oder lagern Sie keine Gegenstände in der Nähe des Inverters.



4.2 Installation des Inverters

Der Inverter ist für die Wandmontage ausgelegt. Bitte verwenden Sie bei der Installation die Wandhaltung und Dehnschrauben.





Das Verfahren ist wie folgt dargestellt:

1. Suchen Sie an der Wand die passende Position anhand der Schraubenlöcher auf der Halterung und markieren Sie dann die Löcher. Bei einer Ziegelwand muss sie für eine Montage mit Dehnschrauben möglich sein.

- 2. Achten Sie darauf, dass die Position der Löcher an der Wand mit der Montageplatte übereinstimmt und das Montagegestell vertikal angebracht ist.
- 3. Hängen Sie den Inverter oben am Montagegestell ein und verwenden Sie dann die M4-Schraube im Zubehör, um den Kühlkörper des Inverters an der Aufhängeplatte zu befestigen, damit sich der Inverter nicht bewegen kann.

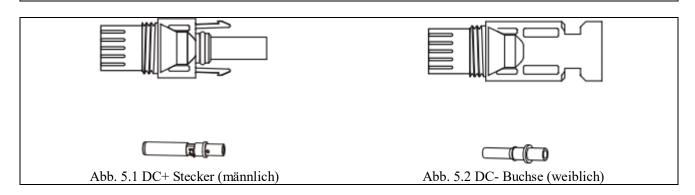
5 Elektrischer Anschluss

5.1 Anschluss der DC-Eingangsklemmen

- 1. Schalten Sie den Hauptschalter der Netzversorgung (AC) aus.
- 2. Schalten Sie den DC-Isolator aus.
- 3. Montieren Sie den PV-Eingangsstecker am Inverter.

Warnung

Wenn Sie PV-Module anschließen, achten Sie darauf, dass PV+ und PV- des Solarmoduls nicht mit der Erdungsschiene des Systems verbunden sind.


Sicherheitstipp

Achten Sie vor dem Anschluss darauf, dass die Polarität der Ausgangsspannung des PV-Matrix mit den Symbolen "DC+" und "DC-" übereinstimmt.

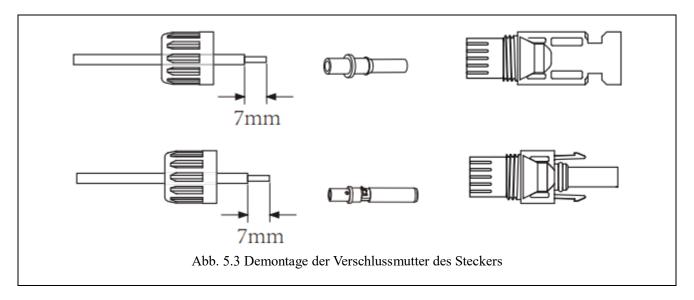
Warnung

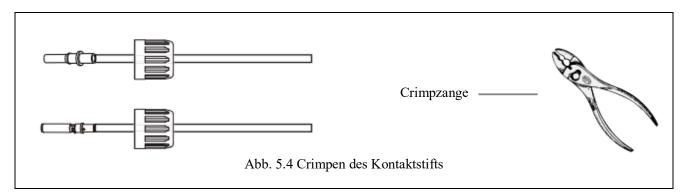
Stellen Sie vor dem Anschluss des Inverters sicher, dass die Leerlaufspannung der PV-Matrix innerhalb 1000V des Inverters liegt.

Sicherheitstipp

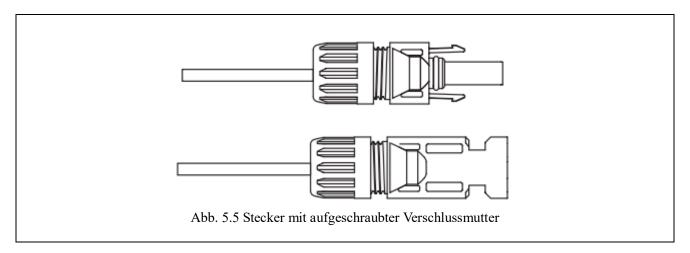
Bitte verwenden Sie für die PV-Anlage zugelassene DC-Kabel.

Kabel-Typs	Querschnitt (mm ²)	
Kubei-1yps	Bereich	Empfohlener Wert
Industrieübliches PV-Kabel	4,0~6,0	4.0 (12 AWG)
(Modell: PV1-F)	(12~10AWG)	4,0 (12AWG)

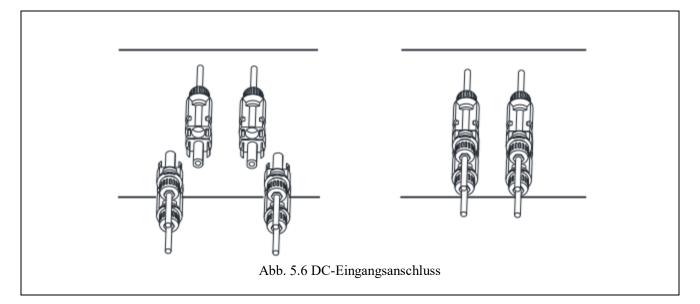

Tabelle 5.1 DC-Kabelspezifikationen



Die Schritte zur Montage der DC-Steckverbinder sind wie folgt aufgeführt:


a) Das DC-Draht ca. 7mm abisolieren, die Verschlussmutter des Steckers demontieren (siehe Abb. 5.3).

b) Crimpen von Metallklemmen mit einer Crimpzange wie in Abb. 5.4 gezeigt


c) Stecken Sie den Kontaktstift in den oberen Teil des Steckers und schrauben Sie die Verschlussmutter auf den oberen Teil des Steckers. (wie in Abb. 5.5 gezeigt).

d) Stecken Sie schließlich den DC-Stecker in den positiven und negativen Eingang des Inverters, wie in Abb. 5.6 dargestellt.

Warnung

Das Sonnenlicht, das auf das Panel scheint, erzeugt eine hohe Spannung, die in Serie geschaltet wird und lebensgefährlich sein kann. Daher muss das Solarpanel vor dem Anschluss der DC-Eingangsleitung mit einem lichtundurchlässigen Material abgedeckt werden und der DC-Schalter sollte auf "AUS" stehen, da sonst die hohe Spannung des Inverters zu lebensbedrohlichen Zuständen führen kann.

Warnung

Bitte verwenden Sie den mitgelieferten DC-Stromanschluss vom Zubehör des Inverters. Verbinden Sie nicht die Stecker verschiedener Hersteller miteinander. Max. DC-Eingangsstrom sollte 20A betragen. Wird dieser Wert überschritten, kann der Inverter beschädigt werden und der Schaden wird nicht durch die Deye-Garantie abgedeckt.

5.2 Anschluss der AC-Eingangsklemmen

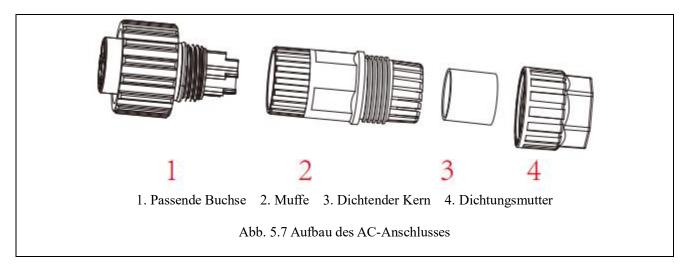
Schalten Sie den DC-Schalter nicht ein, wenn die DC-Klemme angeschlossen ist. Schließen Sie die AC-Klemme an die AC-Seite des Inverters an. Die AC-Seite ist mit dreiphasigen AC-Klemmen ausgestattet, die leicht angeschlossen werden können. Für eine einfache Installation werden flexible Kabel empfohlen. Sie sind wie in Tabelle 5.2 dargestellt

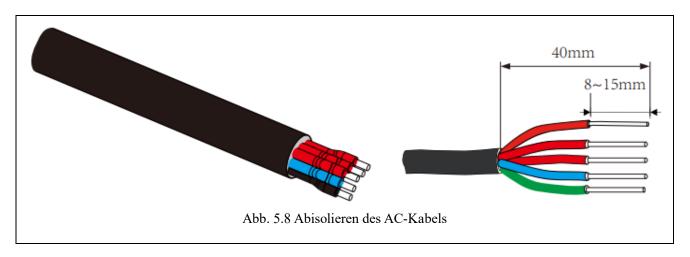
Warnung

Verboten ist die Verwendung eines einzigen Leistungsschalters für mehrere Inverter. Verboten ist auch der Anschluss von Lasten zwischen den Leistungsschaltern von Invertern.

Modell	Kabel CSA	Kabel- Außendurchmesser	AWG	Leistungs- schalter	Max. Kabellänge
SUN-15K-G03	6mm ²	20-25mm	10	30A/400V	Äußeres Kabel (3+N+PE) 20m

Tabelle 5.2 Kabel-Informationen

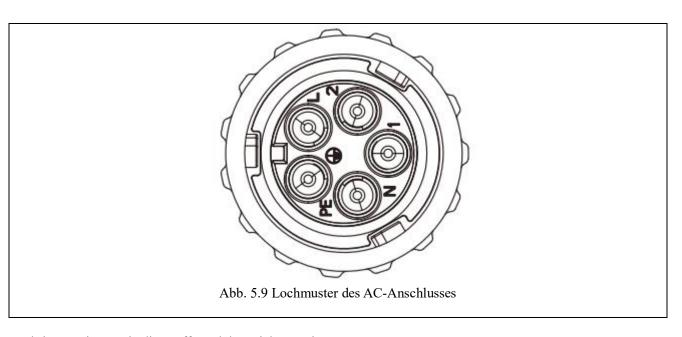



Der AC-Ausgangsstecker ist in drei Teile unterteilt: passende Buchse, Muffe und Dichtungsmuffe, wie in Abb. 5.7 dargestellt. Die Schritte zur Montage sind wie folgt:

Schritt 1: Entfernen Sie nacheinander den Kabeldichtring und die Muffe vom AC-Stecker.

Schritt 2: Verwenden Sie eine Abisolierzange, um den Schutzmantel und die Isolierschicht des AC-Kabels auf die richtige Länge zu bringen, wie in Abb. 5.8 dargestellt.

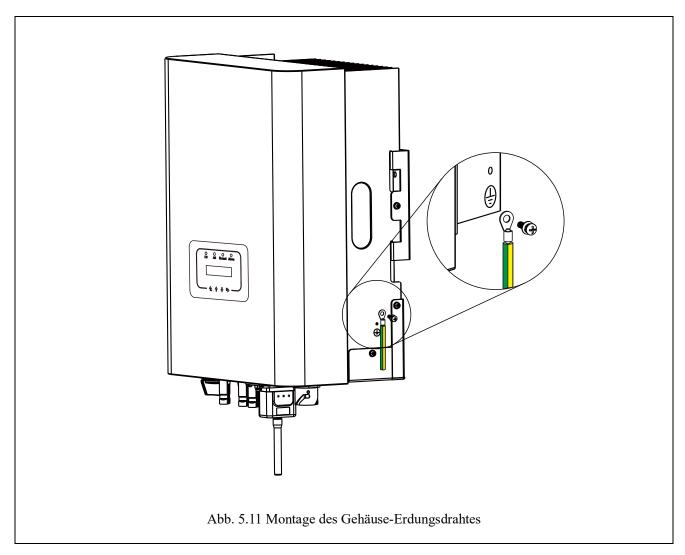
Schritt 3: Führen Sie das Kabel (L1, L2, L3, N, PE) in die Dichtungsmuffe ein.


Warnung

Achten Sie auf die Unterscheidung von L1, L2, L3, N und PE der AC-Kabel.

Schritt 4: Lösen Sie mit einem Sechskantschraubendreher nacheinander die Schrauben der Buchse, stecken Sie jede Kabelader in die entsprechende Buchse und ziehen Sie jede Schraube fest. Das Anschlussloch der AC-Anschlussklemmenbeschriftung ist in Abb. 5.9 dargestellt.

Schritt 5: Bringen Sie die Muffe und den Dichtungsring an. Schritt 6: Schließen Sie die Klemmen, wie in Abb. 5.10 gezeigt, an den Inverter an.



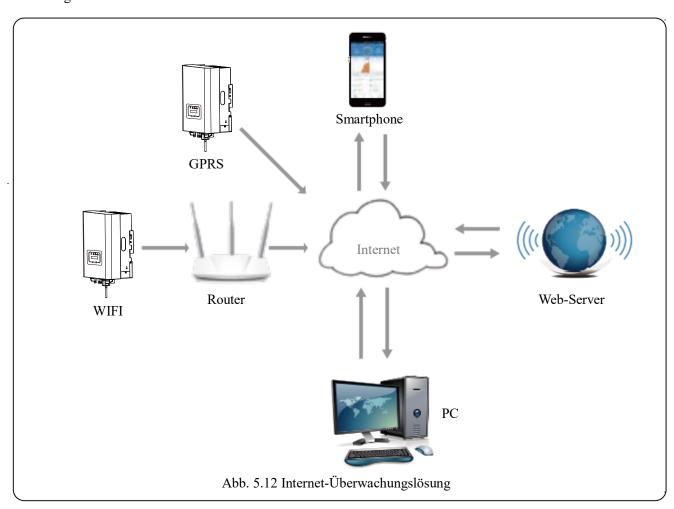
5.3 Anschluss der Erdungsleitung

Eine gute Erdung ist gut für die Widerstandsfähigkeit gegen Überspannungsstöße und die Verbesserung der EMI-Leistung. Bevor Sie also AC-, DC- und Kommunikationskabel anschließen, müssen Sie das Kabel zunächst erden. Bei einem Einzelsystem genügt es, das PE-Kabel zu erden. Bei Systemen mit mehreren Geräten müssen alle PE-Kabel des Inverters an denselben Erdungskupferzug angeschlossen werden, um den Potenzialausgleich zu gewährleisten. Die Montage des Erdungsdrahtes ist in der Abb. 5.11 dargestellt.

Warnung

Der Inverter verfügt über eine eingebaute Leckstrom-Erkennungsschaltung. Wenn ein externes Leckstrom-Schutzgerät angeschlossen ist, muss dessen Betriebsstrom 300mA oder höher sein, da der Inverter sonst möglicherweise nicht ordnungsgemäß funktioniert.

5.4 Schutzeinrichtung für maximalen Überstrom

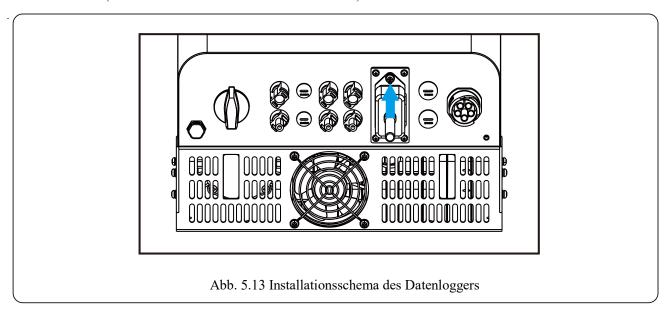

Zum Schutz des AC-Anschlusses des Inverters wird empfohlen, einen Schutzschalter zu installieren, um Überstrom zu vermeiden. Siehe Tabelle 5.3 unten.

Inverter	Nennausgangs-	Nennausgangs-	Strom für Schutzgerät
	spannung (V)	strom (A)	(A)
SUN-15K-G03	220/230	22,7/21,7A	30

Tabelle 5.3 Spezifikationen für empfohlenen Überstromschutz

5.5 Anschluss der Inverterüberwachung

Der Inverter verfügt über die Funktion der drahtlosen Fernüberwachung. Der Inverter mit WiFi-Funktion ist mit einem WiFi-Stecker ausgestattet, um den Inverter mit dem Netzwerk zu verbinden. Die Bedienung des WiFi-Stecks, die Installation, der Internetzugang, das Herunterladen der APP und weitere Vorgänge werden in der Anleitung beschrieben.



5.6 Installation des Datenloggers

Bei der Installation des WiFi-Sticks reißen Sie den Dichtungsstreifen am Inverter ab. Setzen Sie den Datenlogger in die Schnittstelle ein und befestigen Sie ihn mit einer Schraube. Die Konfiguration des Datenloggers muss durchgeführt werden, nachdem verschiedene elektrische Verbindungen hergestellt wurden und der Inverter mit DC versorgt wird. Wenn der Inverter mit DC versorgt wird, wird festgestellt, ob der Datenlogger normal elektrifiziert ist (die LED-Leuchte leuchtet aus dem Gehäuse).

5.7 Konfiguration des Datenloggers

Für die Konfiguration des Datenloggers beachten Sie bitte die Abbildungen des Datenloggers.

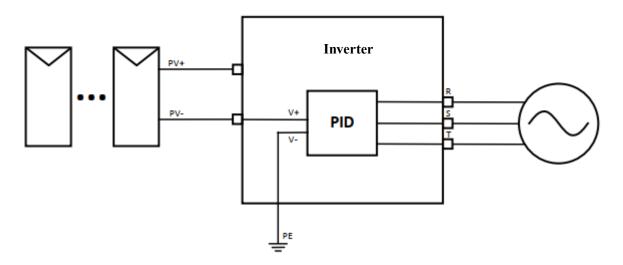
6. Starten und Abschaltung

Vergewissern Sie sich vor der Inbetriebnahme des Inverters, dass der Inverter die folgenden Bedingungen erfüllt, da es sonst zu einem Brand oder einer Beschädigung des Inverters kommen kann. In diesem Fall übernehmen wir keine Verantwortung. Gleichzeitig wird zur Optimierung der Systemkonfiguration empfohlen, die 2 Eingänge an die gleiche Anzahl von PV-Modulen anzuschließen.

- a). Die maximale Leerlaufspannung jedes Satzes von PV-Modulen darf unter keinen Bedingungen 1000 Vdc überschreiten.
- b). An jedem Eingang des Inverters sollte derselbe Typ von PV-Modulen in Reihe geschaltet werden.
- c). Die Gesamtausgangsleistung der PV-Anlage darf die maximale Eingangsleistung des Inverters nicht überschreiten, und die einzelnen PV-Module dürfen die Nennleistung der einzelnen Kanäle nicht überschreiten.

6.1 Starten des Inverters

Beim Starten des dreiphasigen Strang-Inverters sind folgende Schritte zu befolgen:


- 1. Schalten Sie den AC-Schalter ein.
- 2. Schalten Sie den DC-Schalter des Photovoltaikmoduls ein, und wenn das PV-Panel eine ausreichende Startspannung und Leistung liefert, startet der Inverter.
- 3. Der Inverter prüft zunächst die internen Parameter und die Netzparameter, wobei die LCD-Anzeige anzeigt, dass der Inverter einen Selbsttest durchführt.
- 4. Wenn die Parameter innerhalb des zulässigen Bereichs liegen, liefert der Inverter Energie. Die Kontrollleuchte NORMAL leuchtet.

6.2 Abschaltung des Inverters

Beim Abschalten des Inverters sind die folgenden Schritte zu beachten:

- 1. Schalten Sie den AC-Schalter aus.
- 2. Warten Sie 30 Sekunden, schalten Sie den DC-Schalter aus (falls vorhanden) oder ziehen Sie einfach den DC-Eingangsstecker ab. Der Inverter schaltet die LCD-Anzeige und alle LEDs innerhalb von zwei Minuten aus.

6.3 Anti-PID-Funktion (Optional)

Das Anti-PID-Modul repariert den PID-Effekt des PV-Moduls in der Nacht. Das PID-Modul läuft immer, wenn es an AC angeschlossen ist.

Wenn eine Wartung erforderlich ist und der AC-Schalter ausgeschaltet wird, kann die Anti-PID-Funktion deaktiviert werden.

Warnung

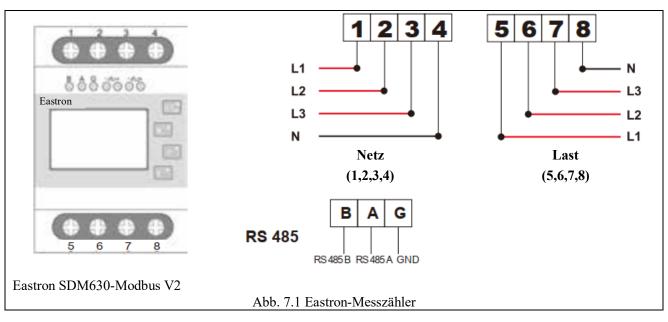
Die PID-Funktionalität ist automatisch. Wenn die DC-Bus-Spannung unter 50 VDC liegt, erzeugt das PID-Modul 450 VDC zwischen der PV-Anlage und der Erde. Es sind keine Steuerung und Ausrüstung erforderlich.

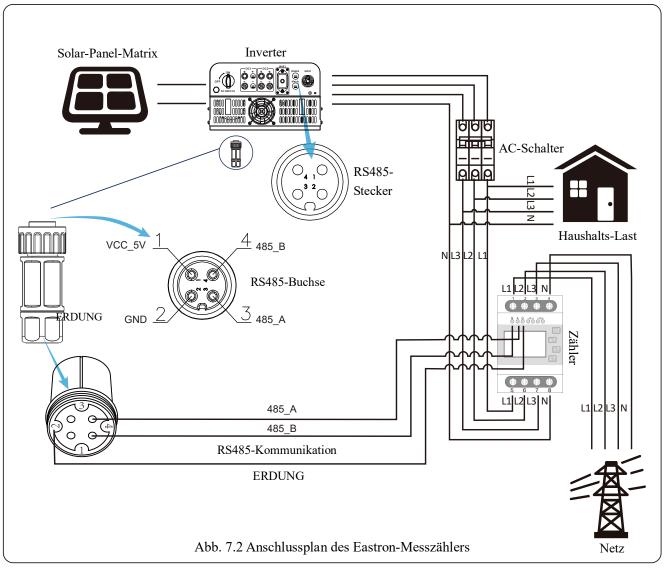
Warnung

Wenn Sie den Inverter warten müssen, schalten Sie bitte zuerst den AC-Schalter und dann den DC-Schalter aus, und warten Sie 5 Minuten, bevor Sie andere Arbeiten durchführen.

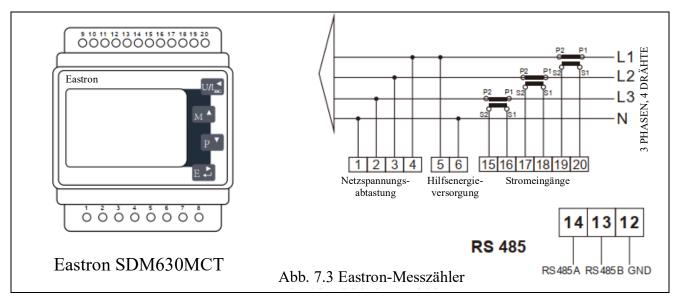
7. Null-Export-Funktion (Nulleinspeisung) über Energiezähler

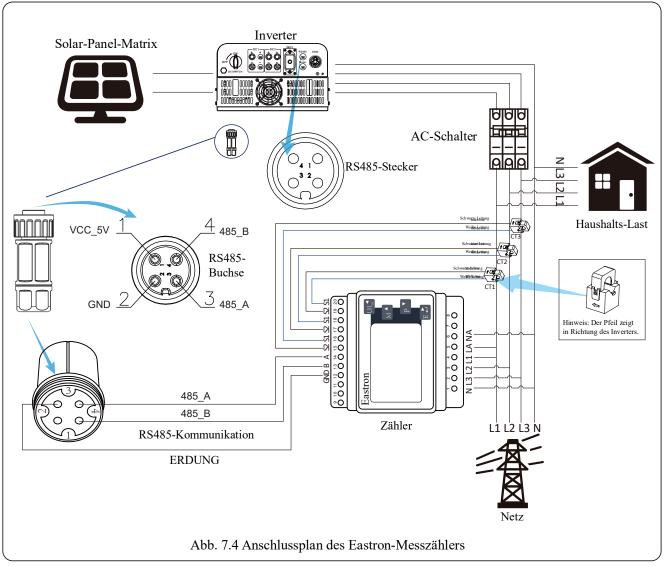
Es gibt zwei Arten von Energiezählern für diese Inverter-Serie. Der erste Typ ist Eastron SDM630-Modbus V2, der max. 100A Strom direkt messen kann. Weitere Einzelheiten entnehmen Sie bitte den Abbildungen 7.1 und 7.2. Der Eastron SDM630 MCT 40mA benötigt einen externen Stromwandler, um den Strom zu messen. Der Leistungsbereich des Stromwandlers reicht von 5A-2000A. Weitere Einzelheiten über den Eastron SDM630 MCT finden Sie in den Abbildungen 7.3 und 7.4. Auch der CHNT-Messzähler DTSU666 wird unterstützt, der max. 80A Strom direkt messen kann. Weitere Einzelheiten über den DTSU666 finden Sie in den Abbildungen 7.5 und 7.6.

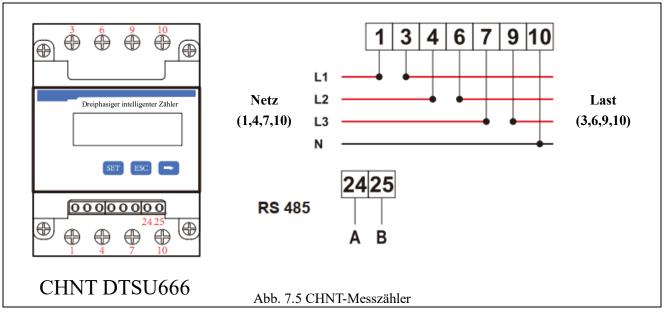

Wenn Sie dies lesen, gehen wir davon aus, dass Sie den Anschluss gemäß den Anforderungen in Kapitel 5 abgeschlossen haben. Wenn Sie Ihren Inverter zu diesem Zeitpunkt in Betrieb genommen haben und die Null-Export-Funktion nutzen möchten, schalten Sie bitte den AC- und DC-Schalter des Inverters aus und warten Sie 5 Minuten, bis der Inverter vollständig entladen ist. Bitte folgen Sie Abb. 7.1, um den Energiezähler anzuschließen.

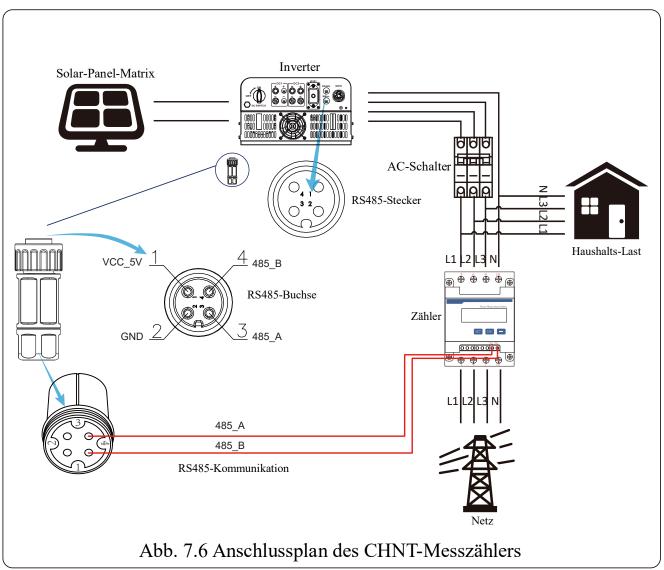

Im Systemschaltplan bezieht sich die rote Linie auf die L-Leitung (L1, L2, L3), die schwarze Linie auf den Neutralleiter (N). Schließen Sie das RS485-Kabel des Energiezählers an den RS485-Port des Inverters an. Es wird empfohlen, einen AC-Schalter zwischen dem Inverter und dem Stromnetz zu installieren. Die Spezifikationen des AC-Schalters werden durch die Leistung der Last bestimmt.

Wenn der von Ihnen gekaufte Inverter keinen integrierten DC-Schalter hat, empfehlen wir Ihnen, einen DC-Schalter anzuschließen. Die Spannung und der Strom des Schalters hängen von der PV-Matrix ab, auf die Sie zugreifen.






Warnung


Bei der endgültigen Installation muss ein nach IEC 60947-1 und IEC 60947-2 zertifizierter Schutzschalter installiert werden.

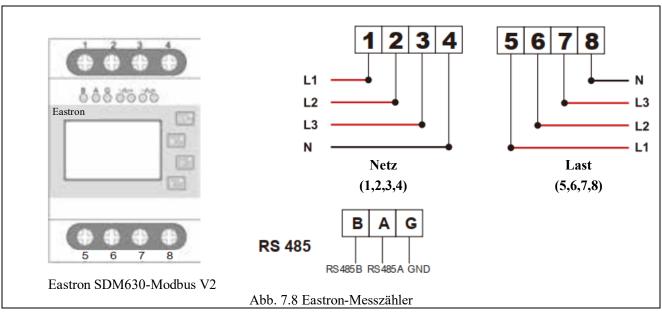
7.1 Messzähler für Mehrstränge- und Parallelbetrieb

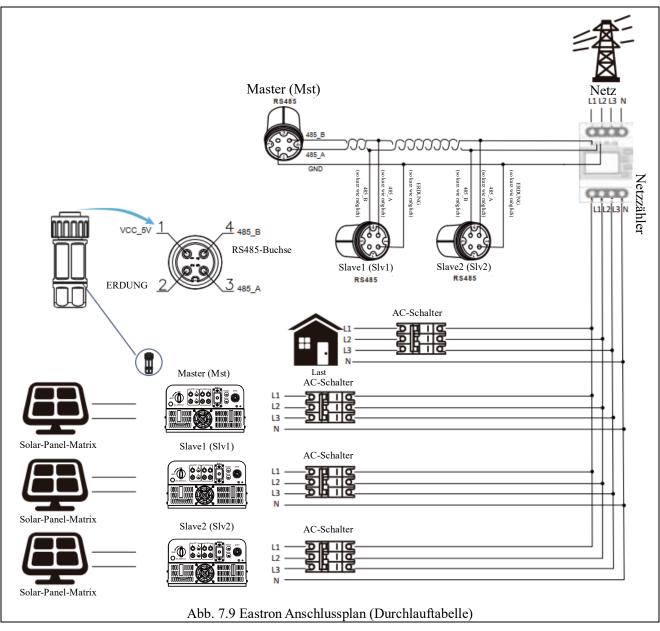
Diese Anwendung betrifft die Parallelschaltung von Strang-Invertern, wobei es nur ein Stromnetz und eine Last gibt, und nur ein Messzähler angeschlossen werden kann, um Rückstrom zu verhindern., dann kommt nur diese Viele-zu-Eins-Antirückstromverbindung in Betracht.

Bei Anlagen mit mehreren Invertern kann auch nur ein Messzähler verwendet werden, um die Null-Export-Funktion zu realisieren. Zum Beispiel, wenn es drei Inverter im System mit einem Messzähler gibt. Wir müssen nun einen Inverter als Master und die anderen als Slaves einrichten, und alle Inverter müssen über RS485 mit dem Messzähler verbunden werden. Nachfolgend finden Sie das Systemdiagramm und die Konfiguration des Systems.

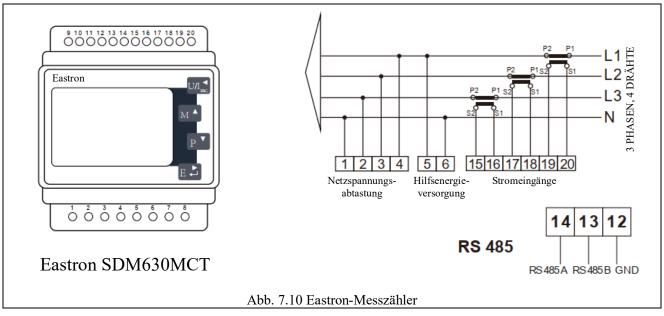
Meter Limiter	OFF <<	Exp_Mode CT_Ratio	AVG <<
MFR	ACREL	Shunt	OFF
FeedIn	0,0KW <<	ShuntQTY	1 <<
Generator	ON	G.MFR	CHNT
G,CT	1 <<	G.FeedIn	0× <<
G.Cap Back<<	0 ;0KW		

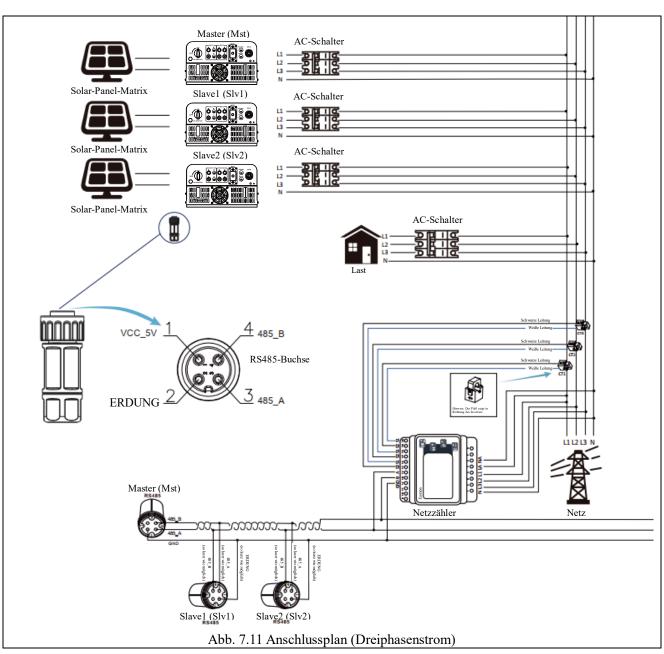
Abb. 7.7 Messzähler-Funktion

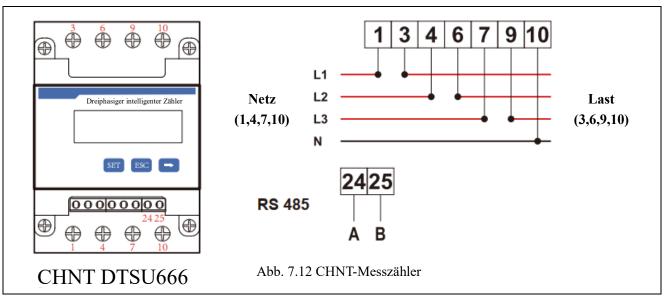


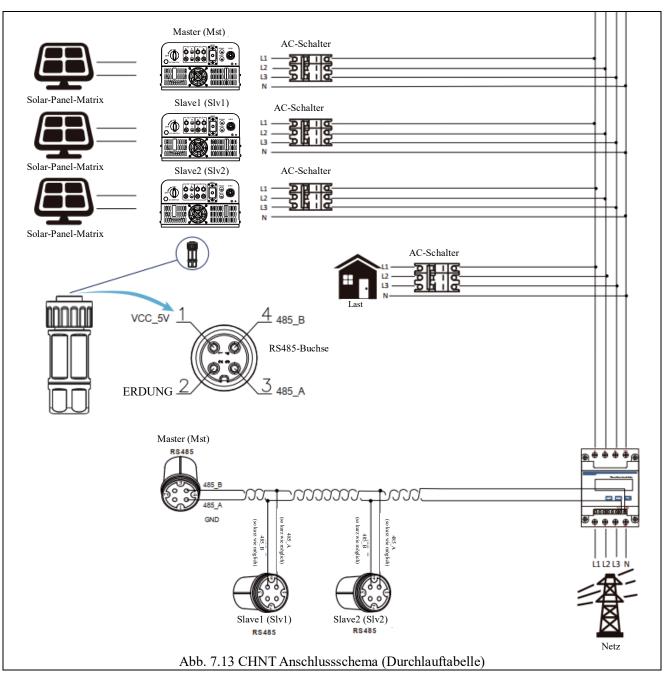

Begriff	Beschreibung	Bereich
Meter	Zähler	
Limiter	Begrenzer: Null-Export-Begrenzung	
OFF	AUS: Ausgeschalteter Zustand	
ON	EIN: Eingeschalteter Zustand	
Exp_Mode	Null-Export-Modus (Nulleinspeisung) AVG: Die durchschnittliche Leistung der drei Phasen wird zu Null exportiert. MIN: Die Phase mit der geringsten Lastleistung wird zu Null exportiert, während die beiden anderen Phasen im Zukauf-Modus sein können.	AVG/MIN
CT_Ratio	Stromwandler-Verhältnis des netzseitigen Messzählers, wenn ein externer Stromwandler verwendet wird.	1-1000
MFR	Hersteller des netzseitigen Messzählers. Die Modbus- Adresse des Messzählers sollte auf 01 eingestellt werden.	AUTO/CHNT/ EASTRON
FeedIn	Prozentualer Anteil des ins Netz eingespeisten Stroms	0-110%
Shunt	Parallelbetrieb mehrerer Inverter. Stellen Sie einen Inverter als Master ein, die anderen sind Slave. Sie müssen nur den Master einstellen, die Slaves folgen den Einstellungen des Masters.	AUS/Master/Slave
ShuntQTY	Anzahl der parallel geschalteten Inverter	1-16
Generator	DG-seitige Messfunktion aktivieren/deaktivieren	EIN/AUS
G.CT	Stromwandler-Verhältnis des DG-seitigen Leistungs- messers bei Verwendung eines externen Stromwandlers.	1-1000
G.MFR	Hersteller des DG-seitigen Messzählers. Die Modbus- Adresse des Messzählers sollte auf 02 eingestellt werden.	AUTO/CHNT/ EASTRON
G.FeedIn	Prozentsatz der DG-Ausgangsleistung.	0-110%
G.Cap	DG-Kapazität	1-999kW
Back	Zurück (Navigation)	

Hinweis: Wählen Sie die Option "Meter/Zähler" im Menü "Run/Ausführen" und drücken Sie lange die ENTER/EINGABE-Taste, um diese Einstellungsseite für Messzähler aufzurufen.









7.2 Verwendung der Null-Export-Funktion

Wenn die Verbindung hergestellt ist, sollten Sie die folgenden Schritte befolgen, um diese Funktion zu nutzen:

- 1. Schalten Sie den AC-Schalter ein.
- 2. Schalten Sie den DC-Schalter ein und warten Sie, bis die LCD-Anzeige des Inverters eingeschaltet ist.
- 3. Drücken Sie die Eingabe-Taste auf der LCD-Anzeige in der Hauptoberfläche, in den Menüoptionen wählen Sie [Parametereinstellung], um Setup-Untermenü zu öffnen, und wählen Sie dann [Laufparameter], wie in Abb. 7.14 gezeigt. Nun geben Sie bitte das Standard-Passwort "1234" durch Drücken der Tasten [Auf, Ab, Eingabe], so gelangen Sie in die Oberfläche der Laufparameter-Einstellung, wie in Abb. 7.15 gezeigt.

Abb. 7.14 Parametereinstellung

Abb. 7.15 Zählerschalter

- 4. Betätigen Sie die Tasten [Auf/Ab], setzen Sie den Cursor auf den Energiezähler und drücken Sie die Taste [Eingabe]. Nun können Sie den Energiezähler mit den Tasten [Auf/Ab] ein- oder ausschalten, und die Einstellung mit der Taste [Eingabe] bestätigen.
- 5. Bewegen Sie den Cursor auf [OK], drücken Sie [Eingabe], um die Einstellungen zu speichern und die Seite mit den Laufparametern zu verlassen. Sonst sind die Einstellungen ungültig.
- 6. Wenn die Einrichtung erfolgreich war, können Sie zur Menüoberfläche zurückkehren und die LCD-Anzeige mit den Tasten [Auf/Ab] zu [Startseite] wechseln. Wenn [Zählerleistung xxW] angezeigt wird, wie in Abb. 7.16 dargestellt, ist die Einstellung der Null-Export-Funktion abgeschlossen.

Abb. 7.16 Einschalten der Null-Export-Funktion über Energiezähler

- 7. Zählerleistung xxW positiv bedeutet, dass das Netz die Last versorgt und kein Strom in das Netz eingespeist wird. Wenn die Zählerleistung negativ ist, bedeutet dies, dass PV-Energie an das Netz verkauft wird oder die Verkabelung des Energiezählers ein Problem aufweist.
- 8. Warten Sie nach dem ordnungsgemäßen Anschluss auf den Start des Inverters. Wenn die Leistung der PV-Anlage dem aktuellen Stromverbrauch entspricht, wird der Inverter eine bestimmte Leistung beibehalten, um der Leistung des Netzes ohne Rückfluss entgegenzuwirken.

7.3 Hinweise zur Verwendung der Null-Export-Funktion

Zu Ihrer Sicherheit und zur Nutzung der Begrenzerfunktion des Inverters geben wir Ihnen die folgenden Hinweise und Vorsichtsmaßnahmen zu beachten:

Sicherheitstipp

Im Null-Export-Modus wird dringend empfohlen, dass die beiden PV-Anlagen die gleiche Anzahl von PV-Panelen mit der gleichen Größe haben, damit der Inverter besser auf die Leistungsbegrenzung reagieren kann.

Sicherheitstipp

Wenn die Versorgungsspannung negativ ist und der Inverter keine Ausgangsleistung hat, bedeutet dies, dass die Ausrichtung des Stromsensors falsch ist. Bitte schalten Sie den Inverter aus und ändern Sie die Ausrichtung des Stromsensors.

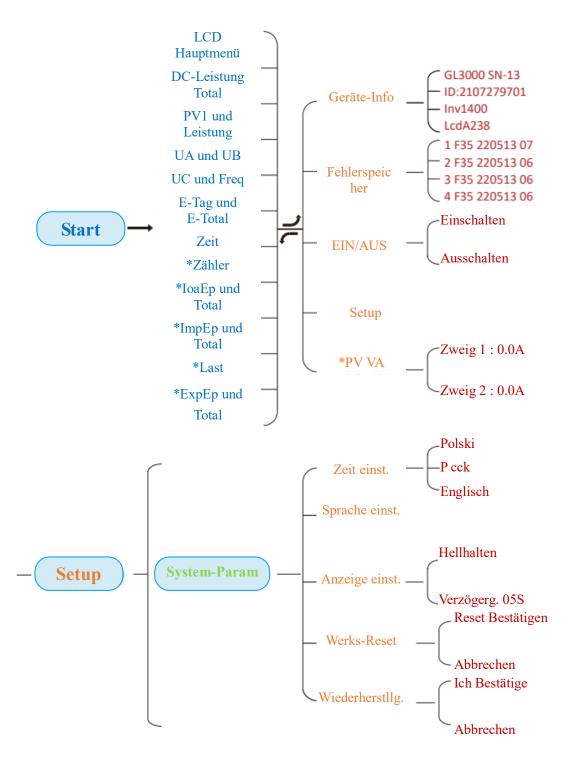
7.4 Wie können Sie die Lastleistung Ihrer PV-Netzkopplungsanlage auf der Monitoring-Plattform abfragen?

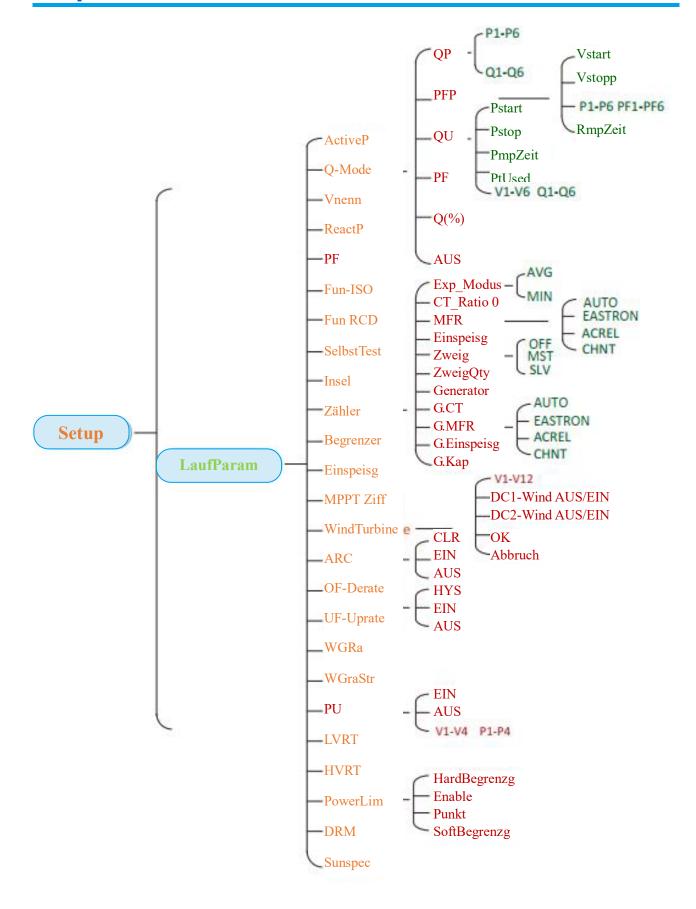
Wenn Sie die Lastleistung des Systems abfragen und wissen möchten, wie viel Energie (kWh) in das Netz eingespeist wird (die Ausgangsleistung des Inverters wird zunächst zur Versorgung der Last verwendet und die überschüssige Energie wird dann in das Netz eingespeist), müssen Sie den Zähler gemäß dem obigen Diagramm anschließen. Nach erfolgreichem Anschluss zeigt der Inverter die Lastleistung auf dem LCD-Display an. **Bitte stellen Sie aber nicht "Zähler EIN" ein**. Auch können Sie die Lastleistung auf der Überwachungsplattform einsehen. Die Einstellung der Anlage erfolgt wie unten beschrieben:

Erstens: Gehen Sie auf die SOLARMAN-Plattform (https://pro.solarmanpv.com für das SOLARMAN Händlerkonto oder https://home.solarmanpv.com für das SOLARMAN Endkundenkonto) und klicken Sie auf "Bearbeiten";

und dann wählen Sie als Systemtyp "Eigenverbrauch".

Zweitens: Gehen Sie auf die Anlagenseite. Wenn dort die PV-Leistung, die Lastleistung und die Netzleistung angezeigt werden, bedeutet dies, dass die Konfiguration korrekt ist.




8. Allgemeine Bedienung

Während des normalen Betriebs zeigt die LCD-Anzeige den aktuellen Status des Inverters an, einschließlich der aktuellen Leistung, der Gesamterzeugung, eines Balkendiagramms des Leistungsbetriebs und der Inverter-ID usw. Drücken Sie die Auf- und Ab-Taste, um die aktuelle DC-Spannung, den DC-Strom, die AC-Spannung, den AC-Strom, die Kühlertemperatur des Inverters, die Software-Versionsnummer und den Wifi-Verbindungsstatus des Inverters anzuzeigen.

*Hinweis: Diese Parameter sind verfügbar, wenn der Messzähler erfolgreich angeschlossen wurde. Andernfalls werden sie nicht angezeigt. **INMETRO** EN50549 EN50438 IEC61727 CUSTOM VDE 4105 UTE C15 - RD1699 - CEI_0_21 G98 G99 - AS4777(.2) - NB/T 32004 MEA NetzStandard - PEA **SchutzParam** ÜberVolt Lv3-Lv1 Erweitert Punkt 240,0V Zurück Verzög. 1000ms UnterVolt Lv1-Lv3 Punkt 235,0V Verzög. 1000ms Setup ÜberFreq Lv3-Lv1 Punkt 52.00Hz Verzög. 1000ms UnterFreq Lv1-Lv3 Punkt 48.00Hz Verzög. 1000ms Wiederverbindg. Vauf Vab Fauf Fab ÜberVolt 10 Min Enable Punkt Netz: 127/220V -Adresse:01 Komm.Param Zähler:AUTO -BaudRate: 9600

Abb. 8.1 LCD-Flussdiagramm

8.1 Die Start-Oberfläche

Auf der ersten Oberfläche können Sie PV-Leistung, PV-Spannung, Netzspannung, Inverter-ID, Modell und andere Informationen überprüfen.

Leistung: 0W

Leistung: 0W

Zustand: Bereitschaft

Zustand: Komm.Fehler

Abb. 8.2 Die erste Oberfläche

Drücken Sie auf AUF oder AB, um die DC-Spannung, den DC-Strom, die AC-Spannung, den AC-Strom und die Temperatur des Inverters zu überprüfen.

Gesamte DC-LEISTUNG:

PV1: 0,0V 0,0A

 $\mathbf{0W}$

Leistung: 0W

Abb. 8.3 Info zu PV-Eingangsspannung und -Strom

Abb. 8.4 Lastleistung

UA: 234V 0,0A

UB: 0V 0,0A

UC: 0V 0,0A

Freq: 0,00Hz

Abb. 8.5 Info zu Netzspannung und -strom

Abb. 8.6 Netzspannung und -frequenz

E-Tag: 0Wh

E-Total: 134kWh

E-Tag: Tägliche Erzeugung;

E-Total: Gesamterzeugung.

Abb. 8.7 PV-Erzeugung

21 - 05 - 2020

15:57:08

Zähler

Leistung: 0W

Abb. 8.8 Zeit

Abb. 8.9 Zählerleistung

LastEp: 0,00KWh

Gesamt: 0,00KWh

LastEp: Täglicher Verbrauch; Gesamt: Gesamtenergieverbrauch.

Abb. 8.10 Lastaufnahme

ImpEp: 0,00kWh

Gesamt: 0,00KWh

ImpEp: Täglich vom Netz bezogene Energie; Gesamt: Gesamte vom Netz bezogene Energie.

Abb. 8.11 Elektrische Energie

ExpEp: 0,00KWh

Gesamt: 0,00KWh

ExpEp: Täglich ans Netz verkaufte Energie; Gesamt: Gesamte ans Netz verkaufte Energie.

Abb. 8.12 Elektrische Energie

8.2 Untermenüs im Hauptmenü

Im Hauptmenü gibt es fünf Untermenüs.

8.2.1 Geräte-Informationen

Sie können die LCD-Software VerA238 und die Steuerboard-Software Ver1400 sehen. Auf dieser Oberfläche gibt es Parameter wie Nennleistung und Kommunikationsadressen.

Geräte-Info<<	GL3000 SN-13
Fehlerspeicher	ID:2107279701
ID:2107279701	Inv1400
Inv1400	LcdA238

Abb. 8.13 Geräteinformationen

8.2.2 Fehlerspeicher

Er kann acht Fehler-Einträge im Menü speichern, einschließlich der Zeit. Kunde kann sich je nach Fehlercode darum kümmern.

Geräte-Info	1 F35 220513 07
Fehlerspeicher <<	2 F35 220513 06
3 F35 220513 06	
4 F35 220513 06	

Abb. 8.14 Fehlerspeicher

8.2.3 EIN/AUS-Einstellung

EIN / AUS <<	Einschalten <<
Einstellung	Ausschalten
Einschalten	Ausschalten

Abb. 8.15 EIN/AUS-Einstellung

Wenn der Inverter ausgeschaltet wird, hört er sofort auf zu arbeiten, geht in den Standby-Modus und durchläuft dann erneut das Selbsttestprogramm. Wenn er den Selbsttest bestanden hat, geht er wieder in Betrieb.

8.2.4 PV VA-Einstellung

Einstellung	Zweig 1: 0,0A
PV VA <<	Zweig 2: 0,0A

Abb. 8.16 PV-Strangstrom

Jeder PV-Strangstrom und diese Funktion ist optional.

8.2.5 Einstellung der Parameter

In der Einstellung gibt es fünf Untermenüs. Zu den Einstellungen gehören Systemparameter, Laufparameter, Schutzparameter und Kommunikationsparameter. Alle diese Informationen dienen als Referenz für die Wartung.

Einstellung <<	Systemparameter <<
PV VA	Parameter ausführen
Schutzparameter	
Kamm naramatar <<	

Abb. 8.17 Untermenüs der Parametereinstellungen

8.3 Einstellung der Systemparameter

Systemparameter umfassen die Uhrzeit, Sprache, Anzeige und Werkseinstellungen.

Zeit-Einstellung <<

Anzeige-Einstellung

Sprache-Einstellung

Werkseinstellungen <<

Werkseinstellungen

Wiederherstellung <<

Abb. 8.18 Systemparameter

20200522 OK

Englisch <<

08:11:21 Abbrechen

Polski

Abb. 8.19 Zeit

Polski

Hellhalten <<

P CCK <<

Verzögerungszeit 05S

Reset Bestätigen <<

Abb. 8.20 Sprache

Abb. 8.21 Einstellung des LCD-Bildschirms

Verzögerungszeit 05S

OK << Abbrechen

Abb. 8.22 Verzögerungszeit

Abbrechen

T T T

Abb. 8.23 Rücksetzen auf Werkseinstellungen

Ich bestätige <<

Abbrechen

Abb. 8.24 Wiederherstellung

8.4 Einstellung der Laufparameter

Warnung

Passwort erforderlich - Nur für zugangsberechtigte Techniker. Unbefugter Zugriff kann zum Verlust der Garantie führen. Das anfängliche Passwort lautet 1234..

PassWort

Abb. 8.25 Passwort

Vref 0.0V
ReactP 0.0% <<
Fun RCD AUS <<
SelfCheck 0S
Limiter AUS
Feed-in 0% <<

MPPT Num 0

WindTurbine <<

Abb. 8.26

Name	Beschreibung	Bereich
ActiveP	Einstellung der Ausgangswirkleistung in %	0-110%
Q-Mode	Mehrere Modi zur Blindleistungsregelung	AUS/Q(P)/PF(P)/Q(U)/PF/Q(%)
Vref	Netzbezugsspannung für Funktionen wie Q(U), PF(P), P(U) usw.	80-260V
ReactP	Einstellung der Blindleistungsabgabe in %	-100%-+100%
PF	Leistungsfaktor	-1-0.8~+0.8-1
Fun_ISO	Erkennung des Isolationswiderstands	EIN/AUS
Fun_RCD	Fehlerstromerkennung	EIN/AUS
Self-check	Zeit für die Selbsttest des Inverters. Standardwert ist 60s	0-1000s
Island	Anti-Insel-Schutz	EIN/AUS
Meter	Wenn Sie den Null-Export-Modus verwenden möchten, stellen Sie bitte "Zähler" auf "EIN" und wählen Sie "AUS" für "Nur Datenansicht".	EIN/AUS
Feed_IN %	Es wird verwendet, um zu bestimmen, wie viel Leistung in das Netz eingespeist werden kann, wenn der Inverter im Null-Export-Modus arbeitet (z.B. Einspeisung=50% des 12KW-Modells und die Lastleistung beträgt 5KW, was bedeutet, dass maximal 6KW Leistung in das Netz eingespeist werden können, nachdem der Inverter zunächst 5KW an die Last geliefert hat.	0-100%

Abb. 8.27

ARC EIN	UF-Uprate AUS <-
OF-Derate AUS <-	WGra 0.000%
WGra 0.0% <<	PU EIN
WGraStr 0.0%	PowerLim <<

Abb. 8.28

HardLimitation	HardLimitation
Enable AUS <<	Point 0.0% <<
SoftLimitation	OK << Abbrechen
Enable AUS <<	
Linubic Moderation	

Abb. 8.29

LVRT AUS	DRM AUS
HVRT AUS <<	Sunspec AUS <<
Sunspec AUS <<	
OK Abbrechen <<	

Abb. 8.30

Name	Beschreibung	Bereich
ARC	Lichtbogen-Fehlererkennungsfunktion	EIN/AUS/CLR
OF-Derate	Reaktion der Wirkleistung auf Überfrequenz	EIN/AUS/HYS
UF-Uprate	Reaktion der Wirkleistung auf Unterfrequenz	EIN/AUS
PU	Reaktion der Leistung auf Netzspannungsabweichung	EIN/AUS
LVRT	Spannungsdurchgangsfunktion	EIN/AUS
HVRT	Spannungsdurchgangsfunktion	EIN/AUS
PowerLim	Harte/weiche Exportgrenzwertsteuerung	EIN/AUS
DRM	Nachfrage-Reaktions-Modi	EIN/AUS
Sunspec	Sonnenspez-Funktion	EIN/AUS
WGraStr	Prozentsatz der Nennleistung pro Sekunde	0.1%~10%
WGra	Prozentsatz der Nennleistung pro Sekunde	0.1%~10%

Abb. 8.31

Reaktion auf Überfrequenz

Diese Inverter-Serie bietet eine "Überfrequenzfunktion".

Durch langes Drücken der Taste "OFD Mode" gelangen Sie in das Einstellungsmenü "Überfrequenz-Reaktion".

ARC EIN	ARC EIN
OF-Derate EIN <-	OFDModus HYS <-
ARC EIN	
OF-Derate AUS <-	

Tab. 11-4 Definition der Parameter für die Reaktion auf Überfrequenz

Parameter	Bereich	Beschreibung
Fstr	45HZ-65HZ	Der Startfrequenzwert für die Überfrequenz-Reaktion.
Fstop	45HZ-65HZ	Der Stoppfrequenzwert für die Überfrequenzreaktion.
RecPT	45HZ-65HZ	Im Hysteresemodus wird die Leistung nur dann wiederhergestellt, wenn sie unter dieser Frequenz liegt.
RecGra	[3,500] 0,01%Pmax/s	Rate der Leistungsrückgewinnung (Prozentsatz der Wirkleistung)

Zum Beispiel: StrPT: 50,5Hz, StopPT: 51,5Hz, RecPT: 50,1Hz. Wenn die Netzfrequenz über Start: 50,5Hz, reduziert der Inverter die Ausgangsleistung linear mit einem Gradienten von 100% Pmax/Hz, bis er StopPT: 51,5Hz erreicht.

Fstr	50.50Hz
Fstop	51.50Hz <<

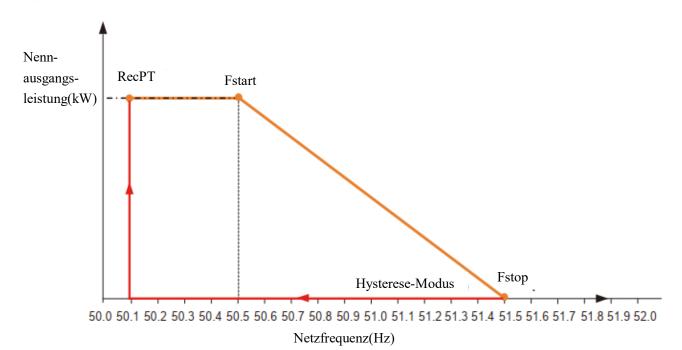


Abb. 11-3 Frq-Watt-Modus für Überfrequenzbedingungen

Wenn die Frequenz Fstop: 51,5Hz überschreitet, sollte die Inverterleistung aufhören (d.h. 0 W).

Wenn die Frequenz niedriger als Fstop: 51,5 Hz ist, erhöht der Inverter die Ausgangsleistung linear mit einem Gradienten von 100 % Pmax/Hz, bis er Fstart: 50,5 Hz erreicht.

Wenn die Frequenz im Hysteresemodus unter Fstop: 51,5 Hz liegt, erhöht der Inverter die Ausgangsleistung nicht, bis sie unter RecPT: 50,1 Hz liegt.

Frec	50,10Hz	RecDly	0,00
RecGra	0,00% <<	ОК	<< Abbrechen

Der Inverter bietet eine Regelungsfunktion für Blindleistung.

Tippen Sie auf **Blindleistungs-Regelungsmodus**, um den richtigen Regelungsmodus auszuwählen und die entsprechenden Parameter einzustellen.

ActiveP	0%	ActiveP	0%
Q-Mode	AUS <<	Q-Mode	Q(P) <<
ActiveP	0%	ActiveP	0%
Q-Mode	PF(P) <<	Q-Mode	Q(U) <<
Q-Mode ActiveP	PF(P) << 0%	Q-Mode ActiveP	Q(U) << 0%

Abb. 8.32

• Modus "AUS"

Die Funktion der Blindleistungsregelung ist deaktiviert. Der PF ist auf +1.000 festgelegt.

• Q(%)

Einstellung der Blindleistungsabgabe in %.

• Modus "PF"

Der Leistungsfaktor (PF) ist festgelegt und die Blindleistung wird durch den Parameter PF geregelt. Der PF reicht von 0,8 führend bis 0,8 nachlaufend.

- Führend: Der Inverter nimmt Blindleistung aus dem Netz auf.
- Nachlaufend: Der Inverter speist Blindleistung in das Netz ein.

• Modus "Q(U)"

Die vom Inverter abgegebene Blindleistung wird durch die Wirkleistung des Inverters gesteuert.

• Modus "Q(P)"

Der PF wird durch die Wirkleistung des Inverters gesteuert.

Modus "PU"

Die Wirkleistungsabgabe des Inverters variiert in Abhängigkeit von der Netzspannung

WgraStr	0.0%	WGraStr	0,0%
PU	AUS <-	PU	EIN <-
V1	0.0% <<	V2	0.0% <<
P1	0.0%	P2	0.0%
V3	0.0% <<	V4	0.0% <<
P3	0.0%	P4	0.0%
OK	Abbrechen <<		

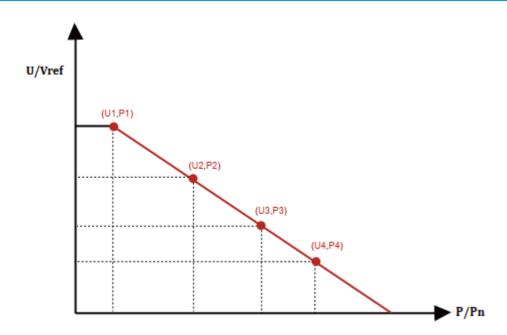
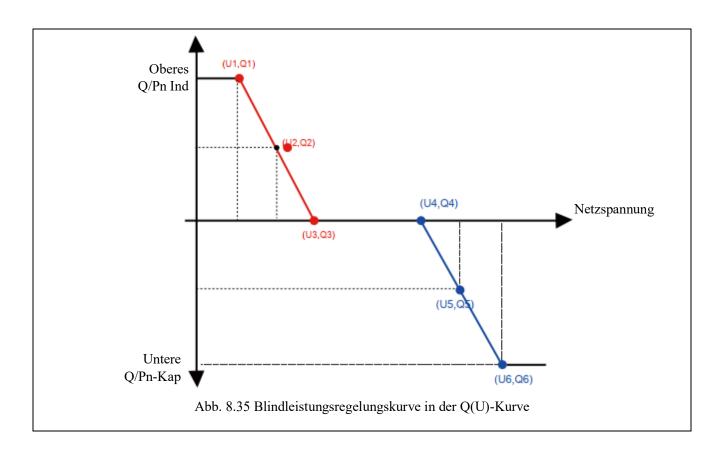


Abb. 8.33 Wirkleistungsregelungskurve in PU-Kurve

Parameter	Bereich	Beschreibung
P1	0%-110% Pn	Wert von P/Pn am Punkt (P1,U1) auf der PU-Moduskurve
U1	0% -150% Vref	Netzspannungsgrenze am Punkt (P1,U1) auf der PU- Moduskurve
P2	0%-110% Pn	Wert von P/Pn am Punkt (P2,U2) auf der PU-Moduskurve
U2	0% -150% Vref	Netzspannungsgrenze am Punkt (P2,U2) auf der PU-Moduskurve
P3	0%-110% Pn	Wert von P/Pn am Punkt (P3,U3) auf der PU-Moduskurve
U3	0% -150% Vref	Netzspannungsgrenze am Punkt (P3,U3) auf der PU-Moduskurve
P4	0%-110% Pn	Wert von P/Pn am Punkt (P4,U4) auf der PU-Moduskurve
U4	0% -150% Vref	Netzspannungsgrenze am Punkt (P4,U4) auf der PU-Moduskurve

Modus "PU" Parameter-Erläuterung


Modus "Q(U)"

ActiveP	0%	Pstart	0.0% <<
QMode	Q(U) <-	Pstop	20.0%
RmpZeit	0s	V1	0.0% <<
PtUsed	0 <<	Q1	0.0%
V2	0.0% <<	V3	0.0% <<
Q2	0.0%	Q3	0.0%
V4	0.0% <<	V5	0.0% <<
V4	0.0%	Q5	0.0%
V6 Q6	130.0% << 30.0%	Q6 OK	0.0% Abbrechen <<

Abb. 8.34

Parameter	Bereich	Beschreibung
Pstart	0%-130% Rate aus Leistung	Der QU-Modus beginnt, wenn die Wirkleistung größer als dieser Wert ist
Pstop	0%-130% Rate aus Leistung	Der QU-Modus endet, wenn die Wirkleistung unter diesem Wert liegt.
Q1	-60% -60% Q/Pn	Wert von Q/Pn am Punkt (U1,Q1) auf der Q(U)-Moduskurve
V1	0-110% VRated	Netzspannungsgrenze am Punkt (U1,Q1) auf der Q(U)-Moduskurve
Q2	-60% -60% Q/Pn	Wert von Q/Pn am Punkt (U2,Q2) auf der Q(U)-Moduskurve
V2	0-110% VRated	Netzspannungsgrenze am Punkt (U2,Q2) auf der Q(U)-Moduskurve
Q3	-60% -60% Q/Pn	Wert von Q/Pn am Punkt (U3,Q3) auf der Q(U)-Moduskurve
V3	0-110% VRated	Netzspannungsgrenze am Punkt (U3,Q3) auf der Q(U)-Moduskurve
Q4	-60% -60% Q/Pn	Wert von Q/Pn am Punkt (U4,Q4) auf der Q(U)-Moduskurve
V4	0-110% VRated	Netzspannungsgrenze am Punkt (U4,Q4) auf der Q(U)-Moduskurve
Q5	-60% -60% Q/Pn	Wert von Q/Pn am Punkt (U5,Q5) auf der Q(U)-Moduskurve
V5	0-110% VRated	Netzspannungsgrenze am Punkt (U5,Q5) auf der Q(U)-Moduskurve
Q6	-60% -60% Q/Pn	Wert von Q/Pn am Punkt (U6,Q6) auf der Q(U)-Moduskurve
V6	0-110% VRated	Netzspannungsgrenze am Punkt (U6,Q6) auf der Q(U)-Moduskurve
RMpZeit	0-1000s	Erhöhen oder verringern Sie die Zeit, die die Blindleistung benötigt, um den angegebenen Wert der Kurve zu erreichen.

Modus "Q(U)" Parameter-Erläuterung

Modus "Q(P)"

Die vom Inverter abgegebene Blindleistung wird durch die Wirkleistung des Inverters gesteuert.

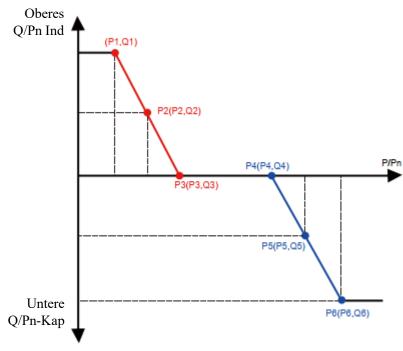


Abb. 8.36 Blindleistungsregelungskurve im Q(P)-Modus

ActiveP	20.0%	P1	0.0% <<
QMode	QP <-	Q1	0.0%
P2	0.0%<<	Р3	0.0% <<
Q2	0.0%	Q3	0.0%
P4	0.0% <<	P5	0.0% <<
Q4	0.0%	Q5	0.0%
P6	0.0% <<	OK	<< Abbrechen
Q6	0.0%		

Parameter	Bereich	Beschreibung
P1	0%-100% Pn	Leistungswert/Pn am Punkt (P1,Q1) auf der Q(P)-Moduskurve
Q1	-60% -60% Q/Pn	Blindleistungswert am Punkt (P1,Q1) auf der Q(P)-Moduskurve
P2	0%-100% Pn	Leistungswert/Pn am Punkt (P2,Q2) auf der Q(P)-Moduskurve
Q2	-60% -60% Q/Pn	Blindleistungswert am Punkt (P2,Q2) auf der Q(P)-Moduskurve
P3	0%-100% Pn	Leistungswert/Pn am Punkt (P3,Q3) auf der Q(P)-Moduskurve
Q3	-60% -60% Q/Pn	Blindleistungswert am Punkt (P3,Q3) auf der Q(P)-Moduskurve
P4	0%-100% Pn	Leistungswert/Pn am Punkt (P4,Q4) auf der Q(P)-Moduskurve
Q4	-60% -60% Q/Pn	Blindleistungswert am Punkt (P4,Q4) auf der Q(P)-Moduskurve
P5	0%-100% Pn	Leistungswert/Pn am Punkt (P5,Q5) auf der Q(P)-Moduskurve
Q5	-60% -60% Q/Pn	Blindleistungswert am Punkt (P5,Q5) auf der Q(P)-Moduskurve
P6	0%-100% Pn	Leistungswert/Pn am Punkt (P6,Q6) auf der Q(P)-Moduskurve
Q6	-60% -60% Q/Pn	Blindleistungswert am Punkt (P6,Q6) auf der Q(P)-Moduskurve

Modus "Q(P)" Parameter-Erläuterung

Modus "PF(P)"

Der Ausgangsleistungsfaktor wird durch die Wirkleistung des Inverters gesteuert.

Vstart	0.0%	P1	0.0%
Vstop	0.0%	PF1	-1.000 <<
P2	0.0%	P3	0.0%
PF2	-1.000 <<	PF3	-1.000 <<
P4	0.0%	P5	0.0%
P4 PF4	0.0% -1.000 <<	P5 PF5	0.0% -1.000 <<

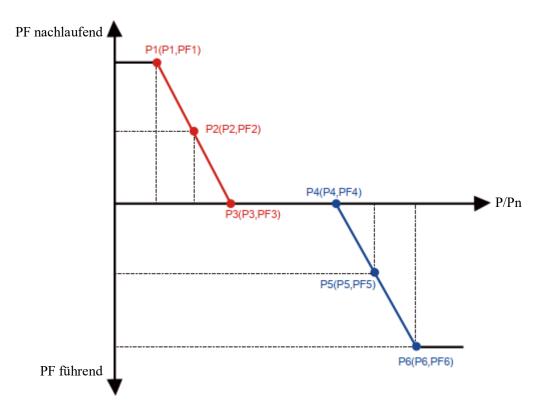


Abb. 8.37 Leistungsfaktor-Regelkurve im PF(P)-Modus

Parameter	Bereich	Beschreibung
Vstart	0-150% Vref	Der PFP-Modus ist aktiviert, wenn die Netzspannung größer als Vstart ist.
Vstop	0-150% Vref	Der PFP-Modus ist deaktiviert, wenn die Netzspannung kleiner als Vstop ist.
P1	0-110% Pn	Leistungswert am Punkt (PF1,P1) auf der PF(P)-Kurve
PF1	0,8 führend - 0,8 nachlaufend	PF-Wert am Punkt (PF1,P1) auf der PF(P)-Kurve
P2	0-110% Pn	Leistungswert am Punkt (PF2,P2) auf der PF(P)-Kurve
PF2	0,8 führend - 0,8 nachlaufend	PF-Wert am Punkt (P2,PF2) auf der PF(P)-Kurve
P3	0-110% Pn	Leistungswert am Punkt (P3,PF3) auf der PF(P)-Kurve
PF3	0,8 führend - 0,8 nachlaufend	PF-Wert am Punkt (P3,PF3) auf der PF(P)-Kurve
P4	0-110% Pn	Leistungswert am Punkt (P4,PF4) auf der PF(P)-Kurve
PF4	0,8 führend - 0,8 nachlaufend	PF-Wert am Punkt (P4,PF4) auf der PF(P)-Kurve
P5	0-110% Pn	Leistungswert am Punkt (P5,PF5) auf der PF(P)-Kurve
PF5	0,8 führend - 0,8 nachlaufend	PF-Wert am Punkt (P5,PF5) auf der PF(P)-Kurve
P6	0-110% Pn	Leistungswert am Punkt (P6,PF6) auf der PF(P)-Kurve
PF6	0,8 führend - 0,8 nachlaufend	PF-Wert am Punkt (P6,PF6) auf der PF(P)-Kurve
RMpZeit	0-1000s	Die Zeit der PFF-Kurve in Sekunden (Zeit, um eine Änderung von 95% zu erreichen).

Modus "PF(P)" Parameter-Erläuterung

8.5 Einstellung der Schutzparameter

Warnung

Nur für Ingenieure.

Wir setzen den Parameter je nach Sicherheitsanforderungen, so dass die Kunden ihn nicht zurücksetzen müssen. Das Passwort ist dasselbe wie bei 8.4 Laufparameter.

PassWort		Netzstandard <<
	***	Fortgeschrittene
Zurück	<<	

Abb. 8.32 Passwort

INMETRO		EN50438	
EN50549	<<	IEC61727	<<
CUSTOM		UTE_C15	
VDE_4105	<<	RD1699	<<
CEI_0 21		AS4777(.2)	
G98_G99	<<	NB/T 32004	
MEA		OK	Abbrechen <<
PEA	<<		

Warnung

Nur für Ingenieure.

ÜberVolt	Lv3	ÜberVolt	Lv3
Punkt	240,0V <<	Verzögerung	1000ms <<

ÜberVolt	Lv2	ÜberVolt	Lv2
Punkt	240,0V <<	Verzögerung	1000ms <<
ÜberVolt	Lv1	ÜberVolt	Lv1
Punkt	240,0V <<	Verzögerung	1000ms <<
UnterVolt Punkt	Lv1 235,0V <<	UnterVolt Verzögerung	Lv1 1000ms <<
UnterVolt Punkt	Lv2	UnterVolt	Lv2
	235,0V <<	Verzögerung	1000ms <<
UnterVolt Punkt	Lv3 235,0V <<	UnterVolt Verzögerung	Lv3 1000ms <<
ÜberFreq	Lv3 52.00Hz <<	ÜberFreq	Lv3
Punkt		Verzögerung	1000ms <<
ÜberFreq	Lv2	ÜberFreq	Lv2
Punkt	52.00Hz <<	Verzögerung	1000ms <<
ÜberFreq	Lv1 52.00Hz <<	ÜberFreq	Lv1
Punkt		Verzögerung	1000ms <<
UnterFreq	Lv1	UnterFreq	Lv1
Punkt	48.00Hz <<	Verzögerung	1000ms <<

UnterFreq	Lv2	UnterFreq	Lv2
Punkt	48.00Hz <<	Verzögerung	1000ms <<
UnterFreq	Lv3	UnterFreq	Lv3
Punkt	48.00Hz <<	Verzögerung	1000ms <<
Wiederherstellung	der Verbindung	Wiederherstellung	der Verbindung
Vup	0.0V <<	Vdown	0.0V <<
Wiederherstellung der Verbindung			
Wiederherstellung	der Verbindung	Wiederherstellung	der Verbindung
Wiederherstellung Fup	der Verbindung 0.00Hz <<	Wiederherstellung Fdown	der Verbindung 0.00Hz <<
Fup	0.00Hz <<	Fdown	0.00Hz <<
Fup OV	0.00Hz << 10 Minuten	Fdown OV	0.00Hz << 10 Minuten

Abb. 8.33 "INDIVIDUELL"

Bitte stellen Sie die richtigen Netzparameter gemäß den Anforderungen der Netzvorschriften Ihres Landes ein. Wenn Sie sich darüber nicht im Klaren sind, wenden Sie sich bitte an Ihren Installateur.

8.6 Einstellung der Kommunikationsparameter

Adresse: 01 <<	BaudRate: 9600
BaudRate: 9600	Zähler: AUTO

Abb. 8.34 Kommunikationsparameter

9. Reparatur und Wartung

Strang-Inverter müssen nicht regelmäßig gewartet werden. Allerdings beeinträchtigen Schmutz oder Staub die thermische Leistung des Kühlkörpers. Es ist besser, ihn mit einer weichen Bürste zu reinigen. Wenn die Oberfläche zu schmutzig ist und die Anzeige von LCD und LED-Lampe beeinträchtigt wird, können Sie sie mit einem feuchten Tuch reinigen.

Gefahr durch hohe Temperaturen

Wenn das Gerät in Betrieb ist, kann die lokale Temperatur sehr hoch und die Berührung kann Verbrennungen verursachen. Vor der Reinigung und Wartung schalten Sie den Inverter aus und warten Sie auf ausreichende Abkühlung des Geräts.

Sicherheitstipp

Für die Reinigung von Teilen des Inverters dürfen keine Lösungsmittel, Scheuermittel oder ätzende Materialien verwendet werden.

10. Fehlerinformation und -verarbeitung

Der Inverter wurde in Übereinstimmung mit den internationalen Normen für Sicherheit und elektromagnetische Verträglichkeit entwickelt. Vor der Auslieferung an den Kunden wurde der Inverter mehreren Tests unterzogen, um seinen optimalen Betrieb und seine Zuverlässigkeit sicherzustellen.

10.1 Fehlercode

Im Falle einer Störung wird auf der LCD-Anzeige eine Alarmmeldung ausgegeben. In diesem Fall kann der Inverter die Stromeinspeisung in das Netz unterbrechen. Die Alarmbeschreibung und die entsprechenden Alarmmeldungen sind in Tabelle 10.1 aufgeführt.

Fehlercode	Beschreibung	Netzgekoppelt - Dreiphasig
F01	DC-Eingang Verpolungsfehler	Überprüfen Sie die Polarität des PV-Eingangs.
F02	DC-Isolationsimpedanz Dauerfehler	Überprüfen Sie das Erdungskabel des Inverters.
F03	DC-Leckstromfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F04	GFDI Erdungsfehler	Überprüfen Sie den Ausgangsanschluss des Solarmoduls.
		Fehler beim Lesen des Speichers (EEPROM). Starten Sie
F05	Speicher-Leserfehler	den Inverter neu. Wenn der Fehler weiterhin besteht, wenden
		Sie sich an Ihren Installateur oder den Deye-Service.
		Fehler beim Schreiben des Speichers (EEPROM). Starten
F06	Speicher-Schreibfehler	Sie den Inverter neu. Wenn der Fehler weiterhin besteht,
100	Speiener Semeioremer	wenden Sie sich an Ihren Installateur oder den
		Deye-Service.
F07	GFDI-Sicherung durchgebrannt	Der Code erscheint selten. Es ist bisher noch nie passiert.
F08	GFDI Erdanschlusssfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F09	IGBT durch zu hohen	Der Code erscheint selten. Es ist bisher noch nie passiert.
10)	Spannungsabfall beschädigt	
		1. Es zeigt an, dass DC-12V nicht vorhanden ist.
F10	Hilfsschalter-Stromversorgungsfehl	2. Starten Sie den Inverter neu. Sollte der Fehler weiterhin
110	er	bestehen, wenden Sie sich bitte an Ihren Installateur oder
711		den Deye-Service.
F11	Fehler des AC-Hauptschützes	Der Code erscheint selten. Es ist bisher noch nie passiert.
F12	Fehler des AC-Hilfsschützes	Der Code erscheint selten. Es ist bisher noch nie passiert.
		1. Ausfall einer Phase oder Ausfall eines Teils der
F12		AC-Spannungserkennung oder offene Relais.
F13	reserviert	2. Starten Sie den Inverter neu. Wenn der Fehler weiterhin
		besteht, wenden Sie sich bitte an Ihren Installateur oder den
E1.4	DC E	Deye-Service.
F14	DC-Firmware Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
		1. Der interne AC-Sensor oder die Erkennungsschaltung auf
		dem Steuerboard oder das Verbindungskabel kann sich
F15	AC-Firmware Überstrom	lösen. 2. Starten Sie den Inverter neu. Wenn der Fehler weiterhin
		besteht, wenden Sie sich bitte an Ihren Installateur oder den
		Deye-Service.
		Dieser Fehler bedeutet, dass der durchschnittliche
		Leckstrom über 300mA liegt. Prüfen Sie, ob die
		DC-Stromversorgung oder die Solarmodule in Ordnung
		sind, und prüfen Sie dann, ob der "Testdaten"->"diL"-Wert
		etwa 40 beträgt; prüfen Sie dann den Leckstromsensor oder
F16	GFCI(RCD) AC-Leckstromfehler	die Schaltung (siehe folgendes Bild). Die Überprüfung der
		Testdaten erfordert ein großes LCD-Display.
		2. Starten Sie den Inverter neu. Wenn der Fehler weiterhin
		besteht, wenden Sie sich bitte an Ihren Installateur oder den
		Deye-Service.
F17	Dreiphasenstrom, Überstromfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
		1. AC-Sensor oder Erkennungsschaltung auf der
		Steuerplatine oder Anschlusskabel prüfen.
F18	AC Überstromfehler der Handwere	2. Starten Sie den Inverter neu oder setzen Sie ihn auf die
110	AC-Überstromfehler der Hardware	Werkseinstellungen zurück. Wenn der Fehler weiterhin
		besteht, wenden Sie sich bitte an Ihren Installateur oder den
		Deye-Service.

Fehlercode	Beschreibung	Netzgekoppelt - Dreiphasig
F19	Synthese aller Hardwarefehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F20	DC-Überstromfehler der Hardware	 Prüfen Sie, ob der Ausgangsstrom des Solarmoduls innerhalb des zulässigen Bereichs liegt. DC-Stromsensor und seine Erkennungsschaltung überprüfen. Prüfen Sie, ob die FW-Version des Inverters für die Hardware geeignet ist. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich bitte an Ihren Installateur oder den Deye-Service.
F21	DC-Leckstromfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F22	Crash-Stopp (wenn es eine Stopp-Taste gibt)	Wenden Sie sich an Ihren Installateur, wenn Sie Hilfe benötigen.
F23	AC-Ableitstrom ist ein transienter Überstrom	1. Dieser Fehler bedeutet, dass der Leckstrom plötzlich über 30mA liegt. Prüfen Sie, ob die DC-Stromversorgung oder die Solarmodule in Ordnung sind, und prüfen Sie dann, ob der "Testdaten"->"diL"-Wert etwa 40 beträgt; prüfen Sie dann den Leckstromsensor oder die Schaltung. Prüfen Sie die Testdaten auf einem größeren LCD-Display. 2. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F24	Fehler der DC-Isolationsimpedanz	 Vpe-Widerstand auf der Hauptplatine oder Erkennungsschaltung auf der Steuerplatine prüfen. Prüfen Sie, ob die PV-Panele in Ordnung sind. In vielen Fällen ist dieses Problem ein PV-Problem. Prüfen Sie, ob das PV-Panel (Aluminiumrahmen) gut geerdet ist und der Inverter gut geerdet ist. Öffnen Sie die Abdeckung des Inverters und prüfen Sie dann, ob das innere Erdungskabel gut am Gehäuse befestigt ist. Prüfen Sie, ob das AC/DC-Kabel oder die Klemmleiste einen Kurzschluss mit der Erde haben oder die Isolierung beschädigt ist. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F25	DC-Rückkopplungsfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F26	Die DC-Sammelschiene ist nicht balanciert	Prüfen Sie, ob das 'BUSN'-Kabel oder das Stromversorgungskabel der Treiberplatine lose ist. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F27	DC-End-Isolationsfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F28	Inverter 1 DC-Hoch-Fehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F29	Fehler des AC-Lastschalters	Der Code erscheint selten. Es ist bisher noch nie passiert.
F30	Fehler des AC-Hauptschützes	 Relais und AC-Spannung der Relais prüfen. Überprüfen Sie die Relais- Treiberschaltung. Prüfen Sie, ob die Software für diesen Inverter geeignet ist. (Alte Inverter haben keine Relaiserkennungsfunktion) Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F31	Fehler im offenen Stromkreis des Relais	1. Mindestens ein Relais kann nicht geschlossen werden. Überprüfen Sie die Relais und ihr Treibersignal. (Alte Inverter haben keine Relaiserkennungsfunktion) 2. Starten Sie den Inverter neu. Wenn der Fehler weiterhin

Fehlercode	Beschreibung	Netzgekoppelt - Dreiphasig
		besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F32	Inverter 2 Gleichstromhochfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F33	AC-Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F34	AC-Strom über Last	Der Code erscheint selten. Es ist bisher noch nie passiert.
F35	Kein AC-Netz	 AC-Netzspannung prüfen. AC-Spannungserkennungsschaltung prüfen. Prüfen Sie, ob der AC-Stecker in gutem Zustand ist. Prüfen Sie, ob die Spannung des AC-Netzes normal ist. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F36	AC-Netzphasenfehler	Der Code erscheint selten. Es ist bisher noch nie passiert.
F37	Dreiphasige AC-Spannung nicht balanciert	Der Code erscheint selten. Es ist bisher noch nie passiert.
F38	Dreiphasige AC-Strom nicht balanciert	Der Code erscheint selten. Es ist bisher noch nie passiert.
F39	AC-Überstrom (ein Zyklus)	 AC-Stromsensor und seinen Stromkreis überprüfen. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F40	DC-Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F41	AC-Leitung W,U Überspannung	Überprüfen Sie die Einstellung des Wechselspannungsschutzes. Prüfen Sie, ob das AC-Kabel zu dünn ist. Prüfen Sie den Spannungsunterschied zwischen LCD und Messgerät.
F42	AC-Leitung W,U Niederspannung	Überprüfen Sie die Einstellung des Wechselspannungsschutzes. Prüfen Sie den Spannungsunterschied zwischen LCD und Messzähler. Prüfen Sie auch, ob alle AC-Kabel fest und korrekt angeschlossen sind.
F43	AC-Leitung V,W Überspannung	Überprüfen Sie die Einstellung des Wechselspannungsschutzes. Prüfen Sie, ob das AC-Kabel zu dünn ist. Prüfen Sie den Spannungsunterschied zwischen LCD und Messzähler.
F44	AC-Leitung V,W Niederspannung	Überprüfen Sie die Einstellung des Wechselspannungsschutzes. Prüfen Sie den Spannungsunterschied zwischen LCD und Messzähler. Prüfen Sie auch, ob alle Wechselstromkabel fest und korrekt angeschlossen sind.
F45	AC-Leitung U,V Überspannung	Überprüfen Sie die Einstellung des Wechselspannungsschutzes. Prüfen Sie, ob das AC-Kabel zu dünn ist. Prüfen Sie den Spannungsunterschied zwischen LCD und Messzähler.
F46	AC-Leitung U,V Niederspannung	Überprüfen Sie die Einstellung des Wechselspannungsschutzes.
F47	AC Überfrequenz	Überprüfen Sie die Einstellung des Frequenzschutzes.
F48	AC untere Frequenz	Überprüfen Sie die Einstellung des Frequenzschutzes.
E40	U-Phasen-Netzstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F49	DC-Komponente Überstrom	
F50	V Phase Netzstrom DC-Komponente Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F51	W-Phasen-Netzstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.

Fehlercode	Beschreibung	Netzgekoppelt - Dreiphasig
	DC-Komponente Überstrom	
F52	AC- Induktor A, Phasenstrom DC-Strom hoch	Der Code erscheint selten. Es ist bisher noch nie passiert.
F53	AC-Induktor B, Phasenstrom DC-Strom hoch	Der Code erscheint selten. Es ist bisher noch nie passiert.
F54	AC-Induktor C, Phasenstrom DC-Strom hoch	Der Code erscheint selten. Es ist bisher noch nie passiert.
F55	DC-Sammelschienenspannung ist zu hoch	Überprüfen Sie die PV-Spannung und die Ubus-Spannung und deren Erkennungsschaltung. Wenn die PV-Eingangsspannung den Grenzwert überschreitet, reduzieren Sie bitte die Anzahl der Solarmodule in Serie. Für die Ubus-Spannung prüfen Sie bitte die LCD-Anzeige.
F56	DC-Sammelschienenspannung ist zu niedrig	Es zeigt an, dass die PV-Eingangsspannung niedrig ist und dies immer am frühen Morgen geschieht. Prüfen Sie die PV-Spannung und die Ubus-Spannung. Wenn der Inverter läuft, wird F56 angezeigt, vielleicht ist der Treiber defekt oder die Firmware muss aktualisiert werden. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.
F57	AC-Umkehrspülung	AC-Umkehrspülung.
F58	AC-Netz U Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F59	AC-Netz V Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F60	AC-Netz W Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F61	Drossel A Phase Überstrom	Der Code erscheint selten. Es ist bisher noch nie passiert.
F62	Überstrom der Phase B des Reaktors	Der Code erscheint selten. Es ist bisher noch nie passiert.
F63	ARC-Störung	 Überprüfen Sie die Kabelverbindung des PV-Moduls und beheben Sie den Fehler; Suchen Sie Hilfe bei uns, wenn Sie nicht in den Normalzustand zurückkehren können.
F64	IGBT-Kühlkörper für hohe Temperaturen	 Prüfen Sie den Temperatursensor. Prüfen Sie, ob die Firmware für die Hardware geeignet ist. Prüfen Sie, ob der Inverter das richtige Modell ist. Starten Sie den Inverter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich an Ihren Installateur oder den Deye-Service.

Tabelle10.1 Fehlercodes und ihre Lösungen

Sicherheitstipp

Wenn Ihr Strang-Inverter eine der in Tabelle 10-1 gezeigten Fehlerinformationen aufweist und Sie das Problem trotz Zurücksetzen des Geräts immer noch nicht lösen können, wenden Sie sich bitte an unseren Händler und geben Sie die nachstehenden Einzelheiten an:

- 1. Seriennummer des Inverters;
- 2. Der Vertrieb/Händler des Inverters (falls vorhanden);
- 3. Datum der Installation;
- 4. Die Beschreibung des Problems (einschließlich des LCD-Fehlercodes und der LED-Anzeigeleuchten);
- 5. Ihre Kontaktangaben.

11.Spezifikation

Modell	SUN-15K-G05
Ausgangsseite	
Max. DC Leistung (kW)	19,5
Max. DC-Eingangsspannung	1000
(V)	1000
Start DC-Eingangsspannung	250
(V)	
MPPT Betriebsbereich (V)	200~850
Max. DC-Eingangsstrom (A)	13+26
Max. Kurzschlussstrom (A)	19,5+39
Anzahl der MPPT/Stränge pro	2/1+2
MPPT	2/1/2
Max. Rückspeisestrom des	0
Inverters (A)	
Ausgangsseite	
Nennausgangsleistung(kW)	15
Max.Wirkleistung(kW)	16,5
AC-Netz-Nennspannung(V)	3L/N/PE 220/380V 230/400V
AC-Netzspannungsbereich (V)	0,85Un-1,1Un (dies kann je nach Netzstandard variieren)
Nenn-Netzfrequenz(Hz)	50/60 (wahlweise) Dreiphasig
Betriebsphase	Dreipnasig
AC-Netz-Nennausgangs- strom (A)	22,7/21,7A
Max. AC-Ausgangsstrom (A)	25/23,9A
Max. Ausgangsfehlerstrom	23/23,9A
(Wechselstrom A, Spitze)	41,4
Max. Ausgangsüberstrom-	
schutz (Wechselstrom A,	46,0
Spitze)	18,0
Ausgangsleistungsfaktor	0,8 führend~0,8 nachlaufend
Netzstrom THD	<3%
DC-Einspritzstrom (mA)	<0,5%
Netzfrequenzbereich	47-52 oder 57-62 (Wahlweise)
Wirkungsgrad	
Max. Wirkungsgrad	98,5%
Euro-Effizienz	97,5%
MPPT Wirkungsgrad	>99%
Allgemeine Daten	
Größe (mm, B×H×T)	333×472×202
Gewicht(kg)	15
Topologie	Transformatorlos
Interner Verbrauch	<1W(Nacht)
Betriebstemperatur	-25 ~ 65°C,> 45°C Leistungsminderung
Schutz gegen Eindringen	IP65
Lärmemission (typisch)	<40 dB
Kühlungskonzept	Natürliche Kühlung
Max. Betriebshöhe	2000m
Lebenslanges Design	>20 Jahre
Netzanschluss Standard	VDE4105,IEC61727/62116,VDE0126,AS4777.2,CEI 0 21,EN50549-1, G98,G99,C10-11,UNE217002,NBR16149/NBR16150
Luftfeuchtigkeit im Betrieb	0~100%
Stafty EMC / Standard	IEC/EN 62109-1,IEC/EN 62109-2, IEC/EN 61000-6-1,IEC/EN 61000-6-2,IEC/EN 61000-6-3,IEC/EN 61000-6-4

Allgemeine Daten	
DC-Anschluss	MC-4 steckbar
AC-Anschluss	Stecker mit Schutzart IP65
Anzeige	LCD1602
Schnittstelle	RS485/RS232/Wifi/LAN

Wattzentrale GmbHIm Stöckmädle 2776307 Karlsbad GERMANY

Tel.: +49 7248 947 90 20 Email: sales@wattzentrale.de Web: www.wattzentrale.de

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD.

Add: No.26-30, South Yongjiang Road, Beilun, 315806, Ningbo, China Fax: +86 (0) 574 8622 8852
Tel: +86 (0) 574 8622 8957
E-mail: service@deye.com.cn
Web: www.deyeinverter.com